
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Automatic IRIS Code Generation in
OpenARC

Seyong Lee

IRIS Miniworkshop
Oak Ridge National Laboratory
Janunary 4, 2022

ORNL is managed by UT-Battelle
for the US Department of Energy https://csmd.ornl.gov/project/openarc-open-accelerator-research-compiler/

22

The IRIS Architecture

• Platform Model
– A single-node system equipped with host CPUs

and multiple compute devices (GPUs, FPGAs,
Xeon Phis, and multicore CPUs)

• Memory Model
– Host memory + shared virtual device memory
– All compute devices share the device memory

• Execution Model
– DAG-style task parallel execution across all

available compute devices

• Programming Model
– Low-level C/C++/Fortran/Python IRIS API host

code + OpenCL/SPIR-V/CUDA/HIP/OpenMP
kernels

– High-level OpenACC, OpenMP4, SYCL* (*
planned)

CUDA
Runtime
Shared
Library

HIP
Runtime
Shared
Library

OpenMP
Kernel
Shared
Library Vendor

OpenCL
Vendor
OpenCL

CPU NVIDIA
GPU

AMD
GPU

Intel
FPGA

Qualcomm
GPU

Task

Task

Task

Task

Task

Task

Task

Task

OpenCL ICD Loader

SPIR-V
Kernel

HIP
Kernel

OpenMP
Kernel

CUDA
Kernel

OpenCL
Kernel

Shared Virtual Device Memory
DDR4 HBM2 HBM2 HBM2 LPDDR4

CPU

DDR4

Dynamic
Platform
Loader

Task
Scheduler

Task

Host Compute Devices

IR
IS

OpenMP Compiler

OpenMP Application

OpenACC Compiler

OpenACC Application

Other Compilers

Others (SYCL, ...)

IRIS API
Host Code

C/C++/Fortran/PythonLo
w

Le

ve
l

Hi
gh

Le

ve
l

Po
lic
y

Po
lic
y

Po
lic
y

Po
lic
y

Automatic high-level-to-low-level translation by OpenARC

33

OpenARC: Open Accelerator Research Compiler

• Open-sourced, high-level intermediate representation
(HLIR)-based, extensible compiler framework.
– Perform source-to-source translation from

OpenACC/OpenMP4+ C to CUDA/OpenCL/HIP.
• Also support source-to-source translation and optimization

between OpenMP and OpenACC.

– Supported target architectures: NVIDIA/AMD GPUs,
Intel Xeon Phis, Intel FPGAs, and Multicore CPUs (via
LLVM)

• Provide a common runtime abstraction (HeteroIR) for
various back-ends.
– Target-specific drivers (e.g., CUDA driver) implement

HeteroIR APIs using low-level backend programming
models (e.g., CUDA).

• Can be used as a research framework for various study
on directive-based accelerator computing.
– OpenARC’s HLIR is easy to understand, access, and

transform the input program.
– Equipped with various advanced analysis/transformation

passes.

S. Lee and J.S. Vetter, “OpenARC: Open Accelerator Research Compiler for Directive-Based, Efficient Heterogeneous Computing,”
in ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC). Vancouver: ACM, 2014

44

Automatic IRIS Code Generation in OpenARC

• OpenARC takes input OpenACC/OpenMP4
programs and generates output IRIS programs
consisting of the following codes:
– HeteroIR-based host program

• Indirectly calls IRIS APIs using the IRIS Driver.

– Target-specific kernels:
• CUDA kernels for NVIDIA GPUs
• OpenCL kernels for general OpenCL devices
• OpenCL kernels for Intel FPGAs
• HIP kernels for AMD GPUs
• OpenMP kernels for general CPUs (partially

implemented)
• DSP kernels for Qualcomm Hexagon DSPs

(planned)

S. Lee and J.S. Vetter, “OpenARC: Open Accelerator Research Compiler for Directive-Based, Efficient Heterogeneous Computing,”
in ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC). Vancouver: ACM, 2014

5

HeteroIR: OpenARC Runtime API

• HeteroIR: High-Level, Architecture-Independent Intermediate Representation
– Used as an intermediate language to map high-level programming models (e.g., OpenACC) to diverse heterogeneous devices.

• Primary Constructs in HeteroIR (Partial List)

HI_init (devnum) Initialize a selected device.

HI_reset () Deinitialize the device.

HI_malloc (devptr, size, flags) Allocate memory on the device (devptr).

HI_malloc1D(hostptr, devptr, size, asyncID, flags) Allocate device memory (devptr) corresponding to the host memory (hostptr).

HI_memcpy (dst, src, size, trtype) Perform synchronous data transfers.

HI_memcpy_async(dst, src, size, trtype, asyncID, waits) Perform asynchronous data transfers.

HI_get_device_address (hptr, dptr, asyncID, tid) Check if the host address has a valid mapping on the device. Return the device address if
mapping is present.

HI_free (hostptr, asyncID) Free the device memory corresponding to the host memory pointed by hostptr.

HI_register_kernel_arg (kernel name, parameter, …) Attach the argument to the corresponding kernel.

HI_kernel_call (kernel name, grid size, block size, …) Launch the kernel with the specified grid size on the specified queue.

HI_set_async (asyncID) Map the specified async ID to a device queue if the mapping does not exist.

HI_wait (asyncID) Wait until all actions on the specified queue are finished.

HI_wait_all () Wait for all queues to finish the actions queued on them.

Configuration

Memory

Kernels

Synchronization

6

Example Translation: VecAdd

Input OpenACC Code

7

Example Translation: Generated Output IRIS Codes

Output Host Code Output Kernel Codes

CUDA Kernel

OpenCL
Kernel

FPGA-OpenCL
Kernel

HIP Kernel

8

Optimizations to Reduce IRIS Task Overheads

• Naïve implementation of the OpenARC-IRIS system would generate IRIS
tasks per memory transfer and compute kernel, which may suffer from
additional overheads caused by too many IRIS tasks.

• Developed an optimized IRIS-task-generation pass, which automatically
merges IRIS tasks belonging to the same OpenACC construct.

• Provide optional runtime APIs to automatically merge multiple IRIS tasks
across different OpenACC constructs if the user guarantees its safety.
– HI_enter_subregion(…);
– HI_exit_subregion(…);

9

Optimizations to Reduce IRIS Task Overheads (Cont.)

• Provide optional runtime APIs to automatically merge multiple IRIS tasks
across different OpenACC constructs if the user guarantees its safety.

Generated Output IRIS Program

HI_enter_subregion()

HI_enter_subregion()

//code generated for OpenACC construct1

HI_exit_subregion()

//Non-OpenACC-related code

HI_enter_subregion()

//code generated for OpenACC construct2

HI_exit_subregion()

HI_exit_subregion()

All the IRIS tasks generated
within the outermost IRIS
subregion will be dynamically
merged into a single IRIS task
and submitted at the end of the
outermost IRIS subregion
(HI_exit_subregion())

Outer IRIS
subregion

Inner IRIS
subregion1

Inner IRIS
subregion2

OpenARC-generated
IRIS subregions

User-created
IRIS subregions

10

Task Scheduling in OpenARC-IRIS System

• Input OpenACC provides a way to set a target device type and/or device
number using environment variables/directives/runtime APIs.

• If a target device is specified in the input OpenACC program, OpenARC-IRIS
runtime submits the generated IRIS tasks to the target device.

• If a target device is not specified, the underlying IRIS runtime decides how
to schedule the generated tasks.
– Environment variable, BRISBANE_ARCHS is used to decide the order to

search available device types.
• Default search order: openmp:cuda:hip:levelzero:hexagon:opencl
• If multiple device types are available, the first found device type is used.

11

Task Scheduling in OpenARC-IRIS System (Cont.)

• Environment variable, OPENARCRT_BRISBANE_POLICY is used to decide which
IRIS policy to use when scheduling the generated tasks.
– none: do not use any IRIS policy and use OpenACC device type and number

when choosing a target device (default)
– brisbane_roundrobin: submit tasks to devices in a round-robin manner.
– brisbane_data: submit tasks to devices in a way to minimize memory transfers

among devices
– brisbane_profile: submit tasks to devices based on the profiled performance
– brisbane_random: submit tasks to devices randomly
– brisbane_any: submit each task to a device with minimal pending tasks
– brisbane_all: submit each task to all devices but only the first available device

executes the task.

12

How to Build OpenARC Compiler and Runtime for IRIS Backend

• Build OpenARC (Refer to README.md in the OpenARC repository)
– Assume IRIS is installed and environments are correctly set (e.g.,

LD_LIBRARY_PATH, LIBRARY_PATH, and CPATH)
– Set up an environment variable, openarc to the root directory of the

OpenARC repository.

– Set up an environment variable, OPENARC_ARCH to 6 to use IRIS as a
backend.

– Run the make command to build both OpenARC compiler and runtime.

export openarc=[OpenARC-root-path]

export OPENARC_ARCH=6

$ make purge #needed only when OpenARC was previously built for other targets.
$ make
$ make install TARGET_SYSTEM=[install-path] #for optional install

13

OpenARC-IRIS Example Compilation and Execution

14

Performance Comparison of OpenARC-Generated IRIS Programs
against the Native GPU Versions

 0.8

 0.9

 1

 1.1

 1.2

 1.3

ja
co

b
i

la
p

la
ce

2
d

m
a

n
d

e
lb

ro
t

sp
m

u
l

sa
xp

y

sg
e

m
m

n
p

b
-c

g

n
p

b
-e

p

n
p

b
-f

t

n
p

b
-c

g
-s

p

n
p

b
-e

p
-s

p

n
p

b
-f

t-
sp

ra
n

d
le

s

b
a

ck
p

ro
p

b
fs

cf
d

h
o

ts
p

o
t

km
e

a
n

s

lu
d

n
w

sr
a

d

e
p

cc
-2

M
M

e
p

cc
-3

M
M

e
p

cc
-A

T
A

X

e
p

cc
-B

IC
G

e
p

cc
-M

V
T

e
p

cc
-S

Y
R

K

e
p

cc
-C

O
V

e
p

cc
-C

O
R

e
p

cc
-S

Y
R

2
K

e
p

cc
-G

E
S

U
M

M
V

e
p

cc
-2

D
C

O
N

V

e
p

cc
-3

D
C

O
N

V

e
p

cc
-2

7
S

e
p

cc
-L

E
2

D

e
p

cc
-H

IM
E

N
O

lu
le

sh

xs
b

e
n

ch

sp
e

c-
o

st
e

n
ci

l

sp
e

c-
o

m
ri
q

G
E

O
M

E
A

N

N
o
rm

a
liz

e
d
 e

xe
cu

tio
n
 t
im

e

1.0

1.0
1.0

1.1

1.0
1.0

1.0
1.0

1.0 1.1

1.0

1.1

1.0
1.0

1.0
1.0

1.0

1.0
1.0 1.0

1.1

1.0
1.0

1.0
1.1

1.1

1.0 1.0
1.0 1.0

1.1

1.0
1.0

1.1

1.0
1.0

1.2

1.0
1.0 1.0 1.0

(a) Relative performance of IRIS-HIP against native HIP

 0.8

 0.9

 1

 1.1

 1.2

 1.3

ja
co

b
i

la
p

la
ce

2
d

m
a

n
d

e
lb

ro
t

sp
m

u
l

sa
xp

y

sg
e

m
m

n
p

b
-c

g

n
p

b
-e

p

n
p

b
-f

t

n
p

b
-c

g
-s

p

n
p

b
-e

p
-s

p

n
p

b
-f

t-
sp

ra
n

d
le

s

b
a

ck
p

ro
p

b
fs

cf
d

h
o

ts
p

o
t

km
e

a
n

s

lu
d

n
w

sr
a

d

e
p

cc
-2

M
M

e
p

cc
-3

M
M

e
p

cc
-A

T
A

X

e
p

cc
-B

IC
G

e
p

cc
-M

V
T

e
p

cc
-S

Y
R

K

e
p

cc
-C

O
V

e
p

cc
-C

O
R

e
p

cc
-S

Y
R

2
K

e
p

cc
-G

E
S

U
M

M
V

e
p

cc
-2

D
C

O
N

V

e
p

cc
-3

D
C

O
N

V

e
p

cc
-2

7
S

e
p

cc
-L

E
2

D

e
p

cc
-H

IM
E

N
O

lu
le

sh

xs
b

e
n

ch

sp
e

c-
o

st
e

n
ci

l

sp
e

c-
o

m
ri
q

G
E

O
M

E
A

N

N
o
rm

a
liz

e
d
 e

xe
cu

tio
n
 t
im

e

1.0

1.0

1.0

1.1

1.0 1.0

1.2

1.0 1.0

1.2

1.0
1.0

1.0

1.0
1.0

1.0

1.1

1.1

1.0

1.0 1.0

1.0
1.0

1.1

1.2

1.1

1.0 1.0

1.0
1.0

1.1

1.1

1.0

1.1

1.0

1.0

1.2

1.0 1.0 1.0
1.0

(b) Relative performance of IRIS-CUDA against native CUDA

[Target System]
CPU: AMD EPYC 7702
GPU: AMD MI60
Backend Runtime: AMD HIP 3.8
Backend Compiler: GCC 9.1

[Target System]
CPU: IBM Power9
GPU: NVIDIA V100
Backend Runtime: CUDA 10.1
Backend Compiler: IBM XL C++ 16.1

15

Current Status and Future Work

• Not-all HeteroIR APIs are implemented in the IRIS driver yet.
– Need to implement some asynchronous HeteroIR APIs such as low-level

asynchronous event management APIs (high-level asynchronous memory
transfer/kernel launch APIs are supported now).

• Some device-specific optimizations are not yet available when targeting the
IRIS backends.
– Example: Pipeline transformation for Intel FPGAs, which is enabled only

when targeting a specific device type directly without using IRIS for now.

• Plan to implement automatic OpenMP kernel and DSP kernel generation
passes in the OpenARC compiler.

