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The IRIS Architecture

• Platform Model
– A single-node system equipped with host CPUs 

and multiple compute devices (GPUs, FPGAs, 
Xeon Phis, and multicore CPUs)

• Memory Model
– Host memory + shared virtual device memory
– All compute devices share the device memory

• Execution Model
– DAG-style task parallel execution across all 

available compute devices

• Programming Model
– Low-level C/C++/Fortran/Python IRIS API host 

code + OpenCL/SPIR-V/CUDA/HIP/OpenMP 
kernels

– High-level OpenACC, OpenMP4, SYCL* (* 
planned)
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OpenARC: Open Accelerator Research Compiler

• Open-sourced, high-level intermediate representation 
(HLIR)-based, extensible compiler framework.
– Perform source-to-source translation from 

OpenACC/OpenMP4+ C to CUDA/OpenCL/HIP.
• Also support source-to-source translation and optimization 

between OpenMP and OpenACC.

– Supported target architectures:  NVIDIA/AMD GPUs, 
Intel Xeon Phis, Intel FPGAs, and Multicore CPUs (via 
LLVM)

• Provide a common runtime abstraction (HeteroIR) for 
various back-ends. 
– Target-specific drivers (e.g., CUDA driver) implement 

HeteroIR APIs using low-level backend programming 
models (e.g., CUDA).

• Can be used as a research framework for various study 
on directive-based accelerator computing.
– OpenARC’s HLIR is easy to understand, access, and 

transform the input program.
– Equipped with various advanced analysis/transformation 

passes.

S. Lee and J.S. Vetter, “OpenARC: Open Accelerator Research Compiler for Directive-Based, Efficient Heterogeneous Computing,” 
in ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC). Vancouver: ACM, 2014
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Automatic IRIS Code Generation in OpenARC

• OpenARC takes input OpenACC/OpenMP4 
programs and generates output IRIS programs 
consisting of the following codes:
– HeteroIR-based host program

• Indirectly calls IRIS APIs using the IRIS Driver.

– Target-specific kernels:
• CUDA kernels for NVIDIA GPUs
• OpenCL kernels for general OpenCL devices
• OpenCL kernels for Intel FPGAs
• HIP kernels for AMD GPUs
• OpenMP kernels for general CPUs (partially 

implemented)
• DSP kernels for Qualcomm Hexagon DSPs 

(planned)

S. Lee and J.S. Vetter, “OpenARC: Open Accelerator Research Compiler for Directive-Based, Efficient Heterogeneous Computing,” 
in ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC). Vancouver: ACM, 2014
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HeteroIR: OpenARC Runtime API

• HeteroIR: High-Level, Architecture-Independent Intermediate Representation
– Used as an intermediate language to map high-level programming models (e.g., OpenACC) to diverse heterogeneous devices.

• Primary Constructs in HeteroIR (Partial List)

HI_init (devnum) Initialize a selected device.

HI_reset () Deinitialize the device.

HI_malloc (devptr, size, flags) Allocate memory on the device (devptr).

HI_malloc1D(hostptr, devptr, size, asyncID, flags) Allocate device memory (devptr) corresponding to the host memory (hostptr).

HI_memcpy (dst, src, size, trtype) Perform synchronous data transfers.

HI_memcpy_async(dst, src, size, trtype, asyncID, waits) Perform asynchronous data transfers.

HI_get_device_address (hptr, dptr, asyncID, tid) Check if the host address has a valid mapping on the device. Return the device address if 
mapping is present.

HI_free (hostptr, asyncID) Free the device memory corresponding to the host memory pointed by hostptr.

HI_register_kernel_arg (kernel name, parameter, …) Attach the argument to the corresponding kernel.

HI_kernel_call (kernel name, grid size, block size, …) Launch the kernel with the specified grid size on the specified queue.

HI_set_async (asyncID) Map the specified async ID to a device queue if the mapping does not exist.

HI_wait (asyncID) Wait until all actions on the specified queue are finished.

HI_wait_all () Wait for all queues to finish the actions queued on them.

Configuration

Memory

Kernels

Synchronization
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Example Translation: VecAdd

Input OpenACC Code
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Example Translation: Generated Output IRIS Codes

Output Host Code Output Kernel Codes

CUDA Kernel

OpenCL 
Kernel

FPGA-OpenCL 
Kernel

HIP Kernel
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Optimizations to Reduce IRIS Task Overheads

• Naïve implementation of the OpenARC-IRIS system would generate IRIS 
tasks per memory transfer and compute kernel, which may suffer from 
additional overheads caused by too many IRIS tasks.

• Developed an optimized IRIS-task-generation pass, which automatically 
merges IRIS tasks belonging to the same OpenACC construct. 

• Provide optional runtime APIs to automatically merge multiple IRIS tasks 
across different OpenACC constructs if the user guarantees its safety.
– HI_enter_subregion(…);
– HI_exit_subregion(…);
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Optimizations to Reduce IRIS Task Overheads (Cont.)

• Provide optional runtime APIs to automatically merge multiple IRIS tasks 
across different OpenACC constructs if the user guarantees its safety.

Generated Output IRIS Program

HI_enter_subregion()

HI_enter_subregion()

//code generated for OpenACC construct1

HI_exit_subregion()

//Non-OpenACC-related code

HI_enter_subregion()

//code generated for OpenACC construct2

HI_exit_subregion()

HI_exit_subregion()

All the IRIS tasks generated 
within the outermost IRIS 
subregion will be dynamically 
merged into a single IRIS task 
and submitted at the end of the 
outermost IRIS subregion 
(HI_exit_subregion())

Outer IRIS 
subregion

Inner IRIS 
subregion1

Inner IRIS 
subregion2

OpenARC-generated 
IRIS subregions

User-created 
IRIS subregions
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Task Scheduling in OpenARC-IRIS System

• Input OpenACC provides a way to set a target device type and/or device 
number using environment variables/directives/runtime APIs.

• If a target device is specified in the input OpenACC program, OpenARC-IRIS 
runtime submits the generated IRIS tasks to the target device.

• If a target device is not specified, the underlying IRIS runtime decides how 
to schedule the generated tasks.
– Environment variable, BRISBANE_ARCHS is used to decide the order to 

search available device types.
• Default search order: openmp:cuda:hip:levelzero:hexagon:opencl
• If multiple device types are available, the first found device type is used. 
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Task Scheduling in OpenARC-IRIS System (Cont.)

• Environment variable, OPENARCRT_BRISBANE_POLICY is used to decide which 
IRIS policy to use when scheduling the generated tasks.
– none: do not use any IRIS policy and use OpenACC device type and number 

when choosing a target device (default)
– brisbane_roundrobin: submit tasks to devices in a round-robin manner.
– brisbane_data: submit tasks to devices in a way to minimize memory transfers 

among devices
– brisbane_profile: submit tasks to devices based on the profiled performance
– brisbane_random: submit tasks to devices randomly
– brisbane_any: submit each task to a device with minimal pending tasks
– brisbane_all: submit each task to all devices but only the first available device 

executes the task.
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How to Build OpenARC Compiler and Runtime for IRIS Backend

• Build OpenARC (Refer to README.md in the OpenARC repository)
– Assume IRIS is installed and environments are correctly set (e.g., 

LD_LIBRARY_PATH, LIBRARY_PATH, and CPATH)
– Set up an environment variable, openarc to the root directory of the 

OpenARC repository.

– Set up an environment variable, OPENARC_ARCH to 6 to use IRIS as a 
backend.

– Run the make command to build both OpenARC compiler and runtime.

export openarc=[OpenARC-root-path]

export OPENARC_ARCH=6

$ make purge #needed only when OpenARC was previously built for other targets.
$ make
$ make install TARGET_SYSTEM=[install-path] #for optional install 
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OpenARC-IRIS Example Compilation and Execution
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Performance Comparison of OpenARC-Generated IRIS Programs 
against the Native GPU Versions
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(a) Relative performance of IRIS-HIP against native HIP
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(b) Relative performance of IRIS-CUDA against native CUDA

[Target System]
CPU: AMD EPYC 7702
GPU: AMD MI60
Backend Runtime: AMD HIP 3.8
Backend Compiler: GCC 9.1

[Target System]
CPU: IBM Power9
GPU: NVIDIA V100
Backend Runtime: CUDA 10.1
Backend Compiler: IBM XL C++ 16.1
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Current Status and Future Work

• Not-all HeteroIR APIs are implemented in the IRIS driver yet.
– Need to implement some asynchronous HeteroIR APIs such as low-level 

asynchronous event management APIs (high-level asynchronous memory 
transfer/kernel launch APIs are supported now).

• Some device-specific optimizations are not yet available when targeting the 
IRIS backends.
– Example: Pipeline transformation for Intel FPGAs, which is enabled only 

when targeting a specific device type directly without using IRIS for now.

• Plan to implement automatic OpenMP kernel and DSP kernel generation 
passes in the OpenARC compiler.


