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IRIS

* The Intelligent Runtime System (IRIS) is a powerful tool, it enables:
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Multiple languages and backends to be used in a common runtime.

Queues can be shared between devices. (Task queue to Device queue).

It promotes a genuine heterogeneous workflow — Systems with multiple accelerators from
different vendors exist, but runtimes to leverage them historically lacking.

It handles dependencies between tasks

manages underlying language implementations of tasks



A whole can of worms!

* However this exposes the additional complexity around how to schedule! How do we:

- Target an optimal device for a given task? (given increasingly heterogeneous systems)

- Memory transfers still expensive (since most heterogenous systems utilize PCI-E to
communicate with devices), this latency is high and implies memory transfers should be
avoided.

- As applications have more complex workflows (the chains of tasks to schedule gets longer) the
more complexity we have to manage.
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DAGGER

* Directed Acyclic Graph Generator for Evaluating Runtimes

e Simple Python Program which generates a task-graph of arbitary length and complexity
Generated DAGs plug directly into IRIS (as JSON)

Used to validate and test different schedulers, and generally stress-test IRIS

Usage:
DAGGER: Directed Acyclic Graph Generator for Evaluating Runtimes

optional argunents:
“h, ~-hel show this help message and exit
-—kernels KERNELS  The kernel names --in the current directory-- to
generate tasks, presented as a coma separated value
string e.g. “process,matnul”
~~kernel-split KERNEL_SPLIT
The percentage of each kernel being assigned to the
task, presented as a comna separated value string e.g.
80,20,
~~depth DEPTH Depth of tree, e.g. 10.
~-nun-tasks NUM_TASKS
Total nunber of tasks to build in the DAG, e.g. 108.
~-min-width NIN_WIDTH
Mininun width of the DAG, e.g. 1.
~-nax-width NAX_WIDTH
Maxinun width of the DAG, e.g. 10
~-cdf-mean COF_MEAN Mu of the Cumulative Distribution Function, default-g
~~cdf-std-dev COF_STO_DEV
Signa*2 of the Cumulative Distribution Function,
default=o.2
~-skips SKIPS Maxinun nunber of junps down the DAG levels (Delta)
between tasks, default=1

Sample Usage:

i tasks-—S task: called process

./dagger_generator.py --kernels="process’ --kernel-split="100' --depth=5 --nun-tasks=5 --min-width=1 --max-width=1

The kemel-spit argument Kemel

Figure 1. CLI DAGGER usage.
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Quick Compositions (1)

In [77]: ! ./dagger_generator.py --kernels="process" --kernel-split='188' --depth=5 --num-tasks=5 --min-width=1 --max-width=1

from IFython dlsplay import Image
Image("./dag.png”, width=600, helght 600)

done

out[77]:

g

%0AK RIDGE Figure 2: Demo of using DAGGER to change parameters.
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Quick Compositions (1)

e Each task in the DAG to represent a kernel task.
e Changing the min and max widths can increase the opportunities for concurrency:

n [52]: ! ./dagger_generator.py --kernels="process’ --kernel-split="108' --depth=1 --num-tasks=5 --min-width=5 --max-width=5
#from IPython.display import IFrame
#IFrame(". /dag.pdf’, width=660, height=606)
from IPython.display import Image
Image("./dag.png", width=660, height=606)
done

out[s2]
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Figure 3: Demo of using DAGGER to change parameters to increase potential concurrency.
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Quick Compositions (I1)

» Support for multiple different kernel tasks—each task is coloured uniquely according to the

kernel name.
In [36]: | ./dagger_generator.py --kernels="process,foo,bar" --kernel-split='50,35,15' --depth=108 --num-tasks=56 --min-width=1 --max-width=25
#from IPython.display import IFrame
#IFrame("./dag.pdf", width=666, hslght 660)
from IPython. dlsplay import Ima
Image("./dag.png”, width=600, he)ght 600)

done

Figure 4: Demo of using DAGGER to change parameters to increase potential concurrency.
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Quick Compositions (1V)

e There is an option to provide a mean and standard-deviation to the Cumulative Density
Function to change the shape of the DAG, for instance:

In [45]: | ./dagger_generator.py -—kernels- process” --kernel-split='100"
from IPython. dlsplay import Ima
Image("./dag.png”, width=608, helght 600)

--depth=25 --num-tasks=10@ --min-width=1 --max-width=5 --cdf-mean=1 --cdf-std-dev=1

done
out[45]:
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Figure 5: Demo of using DAGGER to change CDF parameters to change shape.
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Quick Compositions (V)

e The number of skips allows us to skip up to the maximum number of levels between tasks

to have as a dependency, for instance:

1 ./dagger_generator.py --kernels="process” --kernel-split="108' --depth=25 --num-tasks=180 --min-width=1 --max-width=25 --cdf-mean=2 --cdf-std-dev=s --skips=5

In [47]:
from IPython.display import Image
Image("./dag.png”, width=688, height=608)
done
out[47]:
Figure 6: Demo of using DAGGER to increase levels between dependencies.
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DAGGER to IRIS
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Figure 7: DAGGER generated output running in IRIS.



DAGGER Recap

e DAGGER gives us a simple tool to generate different DAGs to examine the performance of
(and stress-test) IRIS.
e Let's apply some interesting payloads. . .
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Experimental Systems

System GPU Vendor GPU Series #of GPUs Runtimes

Oswald00  Nvidia P100 1 CUDA
OpenCL
Equinox Nvidia V100 4 CUDA
OpenCL
Leconte Nvidia V100 [} CUDA
Radeon AMD Vega20 1 HIP
OpenCL
Explorer AMD M160 2 HIP
OpenCL

Figure 8: ExCL Systems running IRIS.
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The Case for a Smart IRIS Scheduling Policy

» Consider one of the simplest DAGs:

Figure 9: Simple Linear-10 DAG.

e When run on IRIS. ..
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The Case for a Smart IRIS Scheduling Policy (continued)

Linear10 on Leconte (CUDA) Policy: Round-Robin

task0
taskl
task2
task3
taskd
tasks
task6
task7
task8

task9
transferfrom-ijk-buffer0-instance0

transferto-ijk-bufferl-instance0

| transferto-ijk-buffer2-instance0

Tesia VI00-5142-1665 #5 |

ppgooooooenmn

Accelerator

Time (s)

Figure 10: Roundrobin Linear-10 DAG (filtered).
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The Case for a Smart IRIS Scheduling Policy (continued)

e Argh Memory Transfers!

Linear10 on Leconte (CUDA) Policy: Round-Robin

33 D2H
[ H20NP

Tesla V100-5XM2-16GB #5. [l task0
- ) ) ‘ B taskl
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Figure 11: Roundrobin Linear-10 DAG (less filtered).
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IRIS Scheduling Policies

IRIS built-in policies include:

1) All

2) Any,

3) Random,

4) Profiling-Aware

5) Locality-Aware

6) Device number/type
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Choosing the right policy for the job. ..

Linear10 on Leconte (CUDA) Policy: Depend

. task0

N taskl

B task2

0 task3

3 task4

3 tasks

3 taské

3 task7

3 tasks

3 task9

Tesla V100-SXM2-16G8 £0 B transferfrom-ijk-buffer0-instance®
B transferto-ijk-bufferl-instance0

BN transferto-ijk-buffer2-instance0

Accelerator

6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3
Time (s)

Figure 12: Linear-10 DAG with a dependency policy.
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There can’t be only onel!

» Just one example of how different DAG structures generated from DAGGER will favor
different built-in IRIS policies.

 For brevity, | omit studies into all the IRIS systems and Scheduling policies—lots of
permutations!

e But, can we avoid having the user specify the policy?
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It requires them know the shape of the DAG,

Type of operations (each kernel performs/which accelerator type should be used),
Available accelerators and general system configuration (this become increasingly system
specific),

Scales poorly (human error and manual) as we move IRIS codes between multiple systems,
Size of the memory?

What would we need to consider to have a truly smart policy?



Factors for Smart IRIS Scheduling Policies

Aaron’s HUNTER can validate correctness of IRIS scheduler trace, and serve as oracle for
scheduling time(s).
Baseline system performance would need be collected to determine relative score.

- Task latency

= Accelerator performance over the system (Peak GFLOPs)

- Memory transfer-time (or latency and bandwidth)
* Prediction of execution time of each kernel/task run

- Could be addressed with the performance policy (but requires a kernel be run on all available

accelerators for the initial comparison)

- AIWC & Random-Forest/ML methods could be applied
Thankfully, complexity of dependencies already preserved (in task-dag), so at runtime we
know how immutable task-chain/description.

- How far can we reliably look-ahead for scheduling?
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Microbenchmarks — Task Latency

Oswald Equinox Leconte
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Microbenchmarks — System Performance (Peak GFLOPs)
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Figure 14: Performance Scaling from increasing devices on a compute-intensive DGEMM kernel.
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Microbenchmarks — Transfer Time

00

Transfer Time (ms)
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Prototype — Prediction per Task

OAK RIDGE

‘National Laboratory

IRIS Runtime
(PolicyGuided.copih & AIWC.coph)
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Figure 16: Workflow of performance predictions in IRIS.
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Conclusions

* IRIS is a powerful tool, it enables portability of codes originally written for specific
accelerators—also complex iterations between these tasks.

» DAGGER can generate synthetic payloads to test IRIS (stress and correctness), and develop
scenarios to handicap specific policies.

* Prebuilt policies are a necessary step in evaluating IRIS—but there may be a better option!
Let's use these to see!
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Future Work

o Comprehensive study to show shortcomings of each built-in scheduler policy—yet to
determine the best DAG for each policy.

e In IRIS, broader tasks can be composed of multiple (sub)commands, such as, memory
transfers and kernel executions. Do we treat these as “hints” as largely atomic/indivisible
chunks of work which should be completed on a single accelerator?

» Apply AIWC and Random-Forest predictive policy (to see relative performance).
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Workload characterization with AIWC

* Architecture-Independent Workload Characterization (AIWC)

e Plugin for OclGrind — an Extensible OpenCL device simulator?

e Beta available — https://github.com /ANU-HPC/Oclgrind — and will be merged into default
OclGrind

 Simulation of OpenCL kernels occur on LLVM IR — SPIR

e AIWC tracks and measures hardware agnostic events

* Metrics carefully selected and collected during simulator execution

e Large number of metrics collected (28)

e Over a wide spectrum computation, thread communication and memory access patterns

 Supports parallel workloads

* Accessible — as part of OclGrind

* High-accuracy — full resolution, not interrupt/sample driven

%OA]( RIDGE 1J. Price and S. Mclntosh-Smith, “Oclgrind: An extensible opencl device simulator,” in Proceedings of the 3rd International Workshop on
National Laboratory ~ OpenCL, 2015, p. 12.



https://github.com/ANU-HPC/Oclgrind

AIWC Example

LUD Perimeter Opcode ® tiny
Granularity (‘f\(’:’:ggf['i‘,"g‘;f) o small
artirs P st N B bty 7 e
Instructions Per Operand e ), ?SZ;.?;?S:L‘
Total Unique
Load Imbalance Branch
Instructions
» Four major classes: Compute, Parallelism, . Sippea
Footprint 10LSBs
Memory, Control
 Different statistics per metric — oo e —
i R K Memory Skipped 9
distributions, entropy and absolute counts Foourin e
Global Memory LMAE —-
Skipped 8 LSBs

Address Entropy

LMAE —— y
Skipped 1 LSBs Skipped 7 LSBs
LMAE —— LMAE ——

Skipped Skipped 6
2LSBs LSBs
LMAE -
LMAE == Skipped 5

Skipped 3 LSBs  LMAE ——
Skipped 4 LSBs ~ LSBS
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AIWC Example Il

LUD Perimeter LMAE on tiny

¢ Local Memory Address Entropy

e Kernel launched 4 times — over different
problem sizes

e Starting entropy changes with problem size,
but same gradient — memory access
patterns are the same regardless of actual
problem size

o Steeper descent — more localised memory
access — better cache utilization

@

Invocation #

Memory Address Local Entropy
o

IS

2 4 6 8 10
# of Bits Skipped
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AIWC Example I1lI

LUD Diagonal Opcode . o tiny
’ Branch Entropy
Granularity (Average Linear) ° small
Branch Entropy © medium
Barriers Per Instruction
% (Yokota) ® large
Instructions Per Operand 0.75 90% Branch
Instructions
Total Unique
Load Imbalance Branch
Instructions
Total LMAE —
Memory Skipped
Footprint 10LsBs
90% LMAE —
Memory Skipped 9
Footprint LsBs

Global Memory

LMAE -
Address Entropy Skipped 8 LSBs

LMAE —

LMAE -
Skipped 1 LSBs Skipped 7 LSBs
LMAE - LMAE -

Skipped Skipped 6
21SBs __ LSBs
LhAE Siipped s
Skipped 3 LSBs  LMAE —— LSB:
Skipped 4 LSBs. S
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LUD Internal Opcode
Granularity
Barriers Per Instruction 1
0.75

Instructions Per Operand

Load Imbalance

Footprint

90%
Memory
Footprint

Global Memory
Address Entropy

LMAE ——
Skipped 1 LSBs

LMAE ——
Skipped
2LSBs

LMAE -
Skipped 3 LSBs  LMAE ——

Skipped 4 LSBs

® tiny
® small
* medium
e large

Branch Entropy
(Average Linear)

Branch Entropy
(Yokota)

90% Branch
Instructions

Total Unique
Branch

Instructions

LMAE ——
Skipped
10 LSBs

LMAE —
Skipped 9
LSBs

LMAE -
Skipped 8 LSBS

LMAE —
Skipped 7 LSBs.

LMAE ——
Skipped 6
LMAE —— LSBs
Skipped 5
LSBs
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Subset of AIWC Metrics

Table 1: Sample of metrics collected by AIWC — ordered by type.

Type Metric Description
Compute  Opcode total # of unique opcodes required to cover 90% of dynamic instructions
Compute  Total Instruction Count total # of instructions executed
Parallelism  Work-items total # of work-items or threads executed
Parallelism  Total Barriers Hit total # of barrier instructions
Parallelism  Median ITB median # of instructions executed until a barrier
Parallelism  Max IPT maximum # of instructions executed per thread
Parallelism  Mean SIMD Width mean # of data items operated on during an instruction
Memory  Total Memory Footprint total # of unique memory addresses accessed
Memory ~ 90% Memory Footprint # of unique memory addresses that cover 90% of memory accesses
Memory Unique Read/Write Ratio indication of workload being (unique reads / unique writes)
Memory  Reread Ratio indication of memory reuse for reads (unique reads/total reads)
Memory  Global Memory Address Entropy ~ measure of the randomness of memory addresses
Memory Local Memory Address Entropy measure of the spatial locality of memory addresses
Control Total Unique Branch Instructions total # of unique branch instructions
Control 90% Branch Instructions # of unique branch instructions that cover 90% of branch instructions
Control Yokota Branch Entropy branch history entropy using Shannon's information entropy
Control Average Linear Branch Entropy branch history entropy score using the average linear branch entropy
OAK RIDGE
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AIWC Usage

oclgrind --aiwc ./kmeans -p 0 -d 0 -t 0 -- -g -p 2566 -f 30

e The collected metrics are logged as text in the command line interface during execution and
also in a csv file, stored separately for each kernel and invocation.

¢ Files can be found in the working directory with the naming convention aiwc_a_f.csv.

* Where « is the kernel name and (3 is the invocation count — the number of times the kernel
has been executed.
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AIWC Overheads

Table 2: Overhead of the AIWC tool on the £ft benchmark and the Intel i7-6700K CPU.

time memory
usage (ms) increase usage (MB) increase
without AIWC | with AIWC without AIWC | with AIWC
tiny 0.04 73.4 | ~1830x 80.0 85.9 1.07x
small 0.2 427.8 | ~2800x 75.9 149.0 1.96x
medium 2.9 12420 ~4300x 101.4 636.8 6.28x
large 19.6 69300 ~3540x 203.8 2213.2 10.86x%

* large problems, may exmaine fewer iterations, or run on machines with more virtual memory.

 Envisaged use is that AIWC is only run once, for instance, to examine the characteristics of
the kernel in order to identify suitability for accelerators or verify that a high degree of
SIMD vectorization had been achieved.
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AIWC Example IV

Opeode o acc b
Imbalance Branch Entropy « calc_alpha
(Average Linear) « calc_beta
« calc_gamma
Branch Entro .
Granularity 1 okotm) Py o calc_xi
 esta
e est b
90% Branch * estpi
Barriers Per Instruction Instructions « init_alpha
« init_beta
< init_ones
ot Unique® MVM_ON_kernel_naive
Instructions Per otal Unique, - ym_trans_kernel_naive
Operand Inotacrions * S_dot_kemel_naive
_ « scale_a
scale_alpha
scale_b
Total Memory LMAE ——
Footprint Skipped
10LsBs
90% Memory LMAE —
Footprint Skipped 9
P LsBs
Global Memory LMAE -
Address Entropy Skipped 8 LSBs
LMAE —— , LMAE ——
Skipped 1LSBs Skipped 7 LSBs
LMAE -~ : LMAE --
Skipped Skipped 6
20sBs AE - Lsss
LMAE - Skipped 5
AE ——
Skipped 31SBs _ LMAE ipped

Skipped 4 LSBs

Figure 21: Highlighting the variance in features between kernels in the hmm benchmark.
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A larger AIWC Corpus

e Just a sample of 2 of 11 applications
e Similar breakdown of 37 more kernels from the remainder of EOD suite
* Presented in a docker & jupyter artefact
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https://github.com/BeauJoh/aiwc-opencl-based-architecture-independent-workload-characterization-artefact

Sample of the AIWC Corpus
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Itemize Test

¢ What happens now?
- if we use sublists?
= and other things. ..
e Test again
- and now

¢ one more unto the breach,
¢ dear friends,
* once more

1) What happens now?
1) if we use sublists?
2) and other things. ..
2) Test again
1) and now — why worry about counting yourself?
1) blah
2) blah
3) blah
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