I %OAK RIDGE
CNational Laboratory

IRIS Scheduling Experiments with DAGGER

IRIS Mini Workshop CY22

Beau Johnston
Oak Ridge National Laboratory

4 Jan 2022

ORNL is managed by UT-Battelle, LLC for the US Department of Energy s U.S. DEPARTMENT OF

https://csmd.ornl.gov/group/programming-systems | johnstonbeGornt gov

https://csmd.ornl.gov/group/programming-systems

¥

IRIS

* The Intelligent Runtime System (IRIS) is a powerful tool, it enables:

OAK RIDGE

National Laboratory

Multiple languages and backends to be used in a common runtime.

Queues can be shared between devices. (Task queue to Device queue).

It promotes a genuine heterogeneous workflow — Systems with multiple accelerators from
different vendors exist, but runtimes to leverage them historically lacking.

It handles dependencies between tasks

manages underlying language implementations of tasks

A whole can of worms!

* However this exposes the additional complexity around how to schedule! How do we:

- Target an optimal device for a given task? (given increasingly heterogeneous systems)

- Memory transfers still expensive (since most heterogenous systems utilize PCI-E to
communicate with devices), this latency is high and implies memory transfers should be
avoided.

- As applications have more complex workflows (the chains of tasks to schedule gets longer) the
more complexity we have to manage.

&OAK RIDGE

National Laboratory

DAGGER

* Directed Acyclic Graph Generator for Evaluating Runtimes

e Simple Python Program which generates a task-graph of arbitary length and complexity
Generated DAGs plug directly into IRIS (as JSON)

Used to validate and test different schedulers, and generally stress-test IRIS

Usage:
DAGGER: Directed Acyclic Graph Generator for Evaluating Runtimes

optional argunents:
“h, ~-hel show this help message and exit
-—kernels KERNELS The kernel names --in the current directory-- to
generate tasks, presented as a coma separated value
string e.g. “process,matnul”
~~kernel-split KERNEL_SPLIT
The percentage of each kernel being assigned to the
task, presented as a comna separated value string e.g.
80,20,
~~depth DEPTH Depth of tree, e.g. 10.
~-nun-tasks NUM_TASKS
Total nunber of tasks to build in the DAG, e.g. 108.
~-min-width NIN_WIDTH
Mininun width of the DAG, e.g. 1.
~-nax-width NAX_WIDTH
Maxinun width of the DAG, e.g. 10
~-cdf-mean COF_MEAN Mu of the Cumulative Distribution Function, default-g
~~cdf-std-dev COF_STO_DEV
Signa*2 of the Cumulative Distribution Function,
default=o.2
~-skips SKIPS Maxinun nunber of junps down the DAG levels (Delta)
between tasks, default=1

Sample Usage:

i tasks-—S task: called process

./dagger_generator.py --kernels="process’ --kernel-split="100' --depth=5 --nun-tasks=5 --min-width=1 --max-width=1

The kemel-spit argument Kemel

Figure 1. CLI DAGGER usage.

%OAK RIDGE

National Laboratory

Quick Compositions (1)

In [77]: ! ./dagger_generator.py --kernels="process" --kernel-split='188' --depth=5 --num-tasks=5 --min-width=1 --max-width=1

from IFython dlsplay import Image
Image("./dag.png”, width=600, helght 600)

done

out[77]:

g

%0AK RIDGE Figure 2: Demo of using DAGGER to change parameters.

National Laboratory

Quick Compositions (1)

e Each task in the DAG to represent a kernel task.
e Changing the min and max widths can increase the opportunities for concurrency:

n [52]: ! ./dagger_generator.py --kernels="process’ --kernel-split="108' --depth=1 --num-tasks=5 --min-width=5 --max-width=5
#from IPython.display import IFrame
#IFrame(". /dag.pdf’, width=660, height=606)
from IPython.display import Image
Image("./dag.png", width=660, height=606)
done

out[s2]

task? task3

H
3

\
0y
#

S
.

o
\‘ﬁo
{1, spusdep,
e
%
%

aské

Figure 3: Demo of using DAGGER to change parameters to increase potential concurrency.
%OAKRIDGE

National Laboratory

Quick Compositions (I1)

» Support for multiple different kernel tasks—each task is coloured uniquely according to the

kernel name.
In [36]: | ./dagger_generator.py --kernels="process,foo,bar" --kernel-split='50,35,15' --depth=108 --num-tasks=56 --min-width=1 --max-width=25
#from IPython.display import IFrame
#IFrame("./dag.pdf", width=666, hslght 660)
from IPython. dlsplay import Ima
Image("./dag.png”, width=600, he)ght 600)

done

Figure 4: Demo of using DAGGER to change parameters to increase potential concurrency.

%OAK RIDGE

National Laboratory

Quick Compositions (1V)

e There is an option to provide a mean and standard-deviation to the Cumulative Density
Function to change the shape of the DAG, for instance:

In [45]: | ./dagger_generator.py -—kernels- process” --kernel-split='100"
from IPython. dlsplay import Ima
Image("./dag.png”, width=608, helght 600)

--depth=25 --num-tasks=10@ --min-width=1 --max-width=5 --cdf-mean=1 --cdf-std-dev=1

done
out[45]:

z § (mgmy T Fi

= PO
T AR askd taskd)
(askl ., sk sk, (O maske
task1e— ") ftaske) {00 (inskay, tanay., SKI2
sk (O i) 9 g, L o

taskad (< ,num, ffaskag, (%
pench nsm 22, :mn, wm

o gy K oy ET
ka0 mw'm;\ e
: '*'ﬁ»rmﬁqw* g o "U?sw’“‘
raskiw— ¢ ;_,K,; (m:‘i sk
"“";’* i T s, T = makts
kS o k) uus;,m skt

S

D
msw‘ -t ““‘ s ;E“W hxkﬁyw§|w“”

R e e oA e 2
T e e s task? “

“biskeo
B) 0 ek (7 vt %
79

p e Wiy aepends
‘fask80! huxn, ? task7n ¢ task
= By o g) S 1m) U et
kB (P tagkgs 44 focke) —— gy oo 3
tasko: task8s, (707 taskad! T taska1 3
faskod,’ “,m]l’nmofw“‘ o SKIB) " kDS
z kSIS o e

Figure 5: Demo of using DAGGER to change CDF parameters to change shape.
OAK RIDGE

National Laboratory

¥

Quick Compositions (V)

e The number of skips allows us to skip up to the maximum number of levels between tasks

to have as a dependency, for instance:

1 ./dagger_generator.py --kernels="process” --kernel-split="108' --depth=25 --num-tasks=180 --min-width=1 --max-width=25 --cdf-mean=2 --cdf-std-dev=s --skips=5

In [47]:
from IPython.display import Image
Image("./dag.png”, width=688, height=608)
done
out[47]:
Figure 6: Demo of using DAGGER to increase levels between dependencies.
OAK RIDGE

¥

National Laboratory

¥

DAGGER to IRIS

OAK RIDGE

National Laboratory

vy T — 2 0-5001668] Sy 128] eI G 652 e _mpte 8] ok e (18]
frbey m me, zﬂwz!zsﬁza o] o el i it Al e i Hpe

5 o] el 1] e 1] e OWILA Corporotion] i T V00 12 (18] e WIB 10 128 v copute it 8 sk o 1024
by 2L 2 et ki] s ngine

B ek 47 i seee sndonle] oI Corparation] dvielTesta Vi w m el 28] ersLon[WIDIA 104 1028] .ot st 8] . sork oo 1024

i e e e, k) e I

Sy et e g e] e o

o 11vwz:zs»»sza Eriertn, seia] mn v i mu i ot 1] s

S gl i
e ,, SR u, e geiel]

T T T e o]] vt e s e o hrecan

n o] S

. s i

7 2] rertaferne

o Vot Al e sresies]

Tt (omicon ot nessstoenlserstlrces] (1) a1 111 o111 1ok 5] shor e el o]
T o]] cosloe Tl Ve it Somi

5 o oo renie] o] sizia] et mw‘ﬂaxe«ﬁ\ aol

T L. 53] 1 H1E) e oo il

4 Topeschvs e e v - rest v

. R
7 s (i “ el] ot et] ol)

: o] el] 910

7 e o]

T el sy et v st - (e e sonss)

. g T ot 1 Slecrotalo sereesen_meaio] 5]
T et (i et s 1] gt (T s] Sl e

T i i o1

T e oo Mest vl » (e is-s0:6]

¥ u(m;uk L Sleckorelo mareesen besio] 6]
7 e I st lomireseeil alol

1] s (oo cp- s net] o] o8 el o re]

. e 1] el T vi-ovac e o s v oo)

T £ it 15111 a1 1] eekOF (0] sharec e brteO] al8]
§ .) e gty

71 ot (e iostcp 48 rreaL auen] nereliprocss] i1 arial 1. 111 o 1] hosko_sio] sarsc.sae betslol ale]
T e 4] corplet (6] Tsia 113-5001668] el 38513

] Aot (einceta cpp e e) el procas] i1 9eisl 1) o 1] SHecko#_s(o] srec e syze(o] alo]
7 et o] e e] S e

T i o et ol

g o e AR oeea) e e

T] et (orsitane o165 Rsclv o totymen] ermeroses) scncrl3] m. Vi-sece] — [Tests vise-s02-16c8)

1) i (e i) ernlipreces]] geisl.51) black 1 1] seckose (o] smrecor-rees] 918]
7 e fovic oy v] gt 3 s 18 S] S ety

1] e (it con e e]] it e dol

ool oivpy ey i

) s (e pesstinsiot st thedt ey o) ‘wevcyie] eba via-5002-1cal - [Testa vie-s00-1ca]

1] den (0 st el L]] el 6] are e il o]
T el o)

R e
Ty
ol ool
a5 e . t-s10.88628] s
e-overe

Letarn o 750 aln] <1010 w1910 ouieo] 8(. onea] ¢4 (000

Figure 7: DAGGER generated output running in IRIS.

DAGGER Recap

e DAGGER gives us a simple tool to generate different DAGs to examine the performance of
(and stress-test) IRIS.
e Let's apply some interesting payloads. . .

%OAK RIDGE

National Laboratory

Experimental Systems

System GPU Vendor GPU Series #of GPUs Runtimes

Oswald00 Nvidia P100 1 CUDA
OpenCL
Equinox Nvidia V100 4 CUDA
OpenCL
Leconte Nvidia V100 [} CUDA
Radeon AMD Vega20 1 HIP
OpenCL
Explorer AMD M160 2 HIP
OpenCL

Figure 8: ExCL Systems running IRIS.

%OAK RIDGE

National Laboratory

The Case for a Smart IRIS Scheduling Policy

» Consider one of the simplest DAGs:

Figure 9: Simple Linear-10 DAG.

e When run on IRIS. ..
%0AK RIDGE

National Laboratory

The Case for a Smart IRIS Scheduling Policy (continued)

Linear10 on Leconte (CUDA) Policy: Round-Robin

task0
taskl
task2
task3
taskd
tasks
task6
task7
task8

task9
transferfrom-ijk-buffer0-instance0

transferto-ijk-bufferl-instance0

| transferto-ijk-buffer2-instance0

Tesia VI00-5142-1665 #5 |

ppgooooooenmn

Accelerator

Time (s)

Figure 10: Roundrobin Linear-10 DAG (filtered).

&OAK RIDGE

National Laboratory

The Case for a Smart IRIS Scheduling Policy (continued)

e Argh Memory Transfers!

Linear10 on Leconte (CUDA) Policy: Round-Robin

33 D2H
[H20NP

Tesla V100-5XM2-16GB #5. [l task0
-)) ‘ B taskl

B task2

3 task3
RR—— 10l 0 = taske
3 tasks

3 taské

3 task7?
s I 1 100 Il = s
[task9
@ transferfrom-ijk-buffer0-instance0
Tesla V100-SXM2-16GB #2 Dﬂm |:| |:| |:| |:| |:| |:|:| I transferto-ijk-bufferl-instance0
W transferto-ijk-buffer2-instance0
SR 100l Il

Accelerator

Time (s)

Figure 11: Roundrobin Linear-10 DAG (less filtered).

&OAK RIDGE

National Laboratory

IRIS Scheduling Policies

IRIS built-in policies include:

1) All

2) Any,

3) Random,

4) Profiling-Aware

5) Locality-Aware

6) Device number/type

%OAK RIDGE

National Laboratory

Choosing the right policy for the job. ..

Linear10 on Leconte (CUDA) Policy: Depend

. task0

N taskl

B task2

0 task3

3 task4

3 tasks

3 taské

3 task7

3 tasks

3 task9

Tesla V100-SXM2-16G8 £0 B transferfrom-ijk-buffer0-instance®
B transferto-ijk-bufferl-instance0

BN transferto-ijk-buffer2-instance0

Accelerator

6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3
Time (s)

Figure 12: Linear-10 DAG with a dependency policy.

%OAK RIDGE

National Laboratory

¥

There can’t be only onel!

» Just one example of how different DAG structures generated from DAGGER will favor
different built-in IRIS policies.

 For brevity, | omit studies into all the IRIS systems and Scheduling policies—lots of
permutations!

e But, can we avoid having the user specify the policy?

OAK RIDGE

National Laboratory

It requires them know the shape of the DAG,

Type of operations (each kernel performs/which accelerator type should be used),
Available accelerators and general system configuration (this become increasingly system
specific),

Scales poorly (human error and manual) as we move IRIS codes between multiple systems,
Size of the memory?

What would we need to consider to have a truly smart policy?

Factors for Smart IRIS Scheduling Policies

Aaron’s HUNTER can validate correctness of IRIS scheduler trace, and serve as oracle for
scheduling time(s).
Baseline system performance would need be collected to determine relative score.

- Task latency

= Accelerator performance over the system (Peak GFLOPs)

- Memory transfer-time (or latency and bandwidth)
* Prediction of execution time of each kernel/task run

- Could be addressed with the performance policy (but requires a kernel be run on all available

accelerators for the initial comparison)

- AIWC & Random-Forest/ML methods could be applied
Thankfully, complexity of dependencies already preserved (in task-dag), so at runtime we
know how immutable task-chain/description.

- How far can we reliably look-ahead for scheduling?

OAK RIDGE

‘National Laboratory

¥

Microbenchmarks — Task Latency

Oswald Equinox Leconte

AJ%L ﬂ.lﬂ.-n.-.n i _om _om

Radeon Explorer

ﬁ]ﬁﬂm M#ﬁﬂu

1

&OAK RIDGE

National Laboratory) Number Of Kernel Launches

Microbenchmarks — System Performance (Peak GFLOPs)

1200-

ion)

600~

RRRRRR

GFLOPs (Double Precisi

Number of Concurrent Device Enqueues

Figure 14: Performance Scaling from increasing devices on a compute-intensive DGEMM kernel.

%OAK RIDGE

‘National Laboratory

Microbenchmarks — Transfer Time

00

Transfer Time (ms)

%OAK RIDGE W

National Laboratory

¥

Prototype — Prediction per Task

OAK RIDGE

‘National Laboratory

IRIS Runtime
(PolicyGuided.copih & AIWC.coph)
Select Device

with Shortest
Execution Time,

Prediction
(Javery_model 3 & ACpp)

Predicted
Execution
Times

Architecture
Independent
Metrics

Save AIWC
Metrics

Load AIWC
Metrics

Architecture

Independent|
Metrics

AIWC Feature
Extraction

Data Collection

(/GP_coliect_datash)

Performance|
Results

Architecture

Independent
Metrics

Figure 16: Workflow of performance predictions in IRIS.

Model Training

1GP_bulld_modelsh)

LibSciBench
Measurements

Random Forest

EOD Benchmark res!
Suite Model Generator,

AIWC Feature
Extraction

Conclusions

* IRIS is a powerful tool, it enables portability of codes originally written for specific
accelerators—also complex iterations between these tasks.

» DAGGER can generate synthetic payloads to test IRIS (stress and correctness), and develop
scenarios to handicap specific policies.

* Prebuilt policies are a necessary step in evaluating IRIS—but there may be a better option!
Let's use these to see!

%OAK RIDGE

National Laboratory

Future Work

o Comprehensive study to show shortcomings of each built-in scheduler policy—yet to
determine the best DAG for each policy.

e In IRIS, broader tasks can be composed of multiple (sub)commands, such as, memory
transfers and kernel executions. Do we treat these as “hints” as largely atomic/indivisible
chunks of work which should be completed on a single accelerator?

» Apply AIWC and Random-Forest predictive policy (to see relative performance).

&OAK RIDGE

National Laboratory

Workload characterization with AIWC

* Architecture-Independent Workload Characterization (AIWC)

e Plugin for OclGrind — an Extensible OpenCL device simulator?

e Beta available — https://github.com /ANU-HPC/Oclgrind — and will be merged into default
OclGrind

 Simulation of OpenCL kernels occur on LLVM IR — SPIR

e AIWC tracks and measures hardware agnostic events

* Metrics carefully selected and collected during simulator execution

e Large number of metrics collected (28)

e Over a wide spectrum computation, thread communication and memory access patterns

 Supports parallel workloads

* Accessible — as part of OclGrind

* High-accuracy — full resolution, not interrupt/sample driven

%OA](RIDGE 1J. Price and S. Mclntosh-Smith, “Oclgrind: An extensible opencl device simulator,” in Proceedings of the 3rd International Workshop on
National Laboratory ~ OpenCL, 2015, p. 12.

https://github.com/ANU-HPC/Oclgrind

AIWC Example

LUD Perimeter Opcode ® tiny
Granularity (‘f\(’:’:ggf['i‘,"g‘;f) o small
artirs P st N B bty 7 e
Instructions Per Operand e), ?SZ;.?;?S:L‘
Total Unique
Load Imbalance Branch
Instructions
» Four major classes: Compute, Parallelism, . Sippea
Footprint 10LSBs
Memory, Control
 Different statistics per metric — oo e —
i R K Memory Skipped 9
distributions, entropy and absolute counts Foourin e
Global Memory LMAE —-
Skipped 8 LSBs

Address Entropy

LMAE —— y
Skipped 1 LSBs Skipped 7 LSBs
LMAE —— LMAE ——

Skipped Skipped 6
2LSBs LSBs
LMAE -
LMAE == Skipped 5

Skipped 3 LSBs LMAE ——
Skipped 4 LSBs ~ LSBS

%OAK RIDGE

National Laboratory

AIWC Example Il

LUD Perimeter LMAE on tiny

¢ Local Memory Address Entropy

e Kernel launched 4 times — over different
problem sizes

e Starting entropy changes with problem size,
but same gradient — memory access
patterns are the same regardless of actual
problem size

o Steeper descent — more localised memory
access — better cache utilization

@

Invocation #

Memory Address Local Entropy
o

IS

2 4 6 8 10
of Bits Skipped

%OAK RIDGE

National Laboratory

AIWC Example I1lI

LUD Diagonal Opcode . o tiny
’ Branch Entropy
Granularity (Average Linear) ° small
Branch Entropy © medium
Barriers Per Instruction
% (Yokota) ® large
Instructions Per Operand 0.75 90% Branch
Instructions
Total Unique
Load Imbalance Branch
Instructions
Total LMAE —
Memory Skipped
Footprint 10LsBs
90% LMAE —
Memory Skipped 9
Footprint LsBs

Global Memory

LMAE -
Address Entropy Skipped 8 LSBs

LMAE —

LMAE -
Skipped 1 LSBs Skipped 7 LSBs
LMAE - LMAE -

Skipped Skipped 6
21SBs __ LSBs
LhAE Siipped s
Skipped 3 LSBs LMAE —— LSB:
Skipped 4 LSBs. S

OAK RIDGE

National Laboratory

¥

LUD Internal Opcode
Granularity
Barriers Per Instruction 1
0.75

Instructions Per Operand

Load Imbalance

Footprint

90%
Memory
Footprint

Global Memory
Address Entropy

LMAE ——
Skipped 1 LSBs

LMAE ——
Skipped
2LSBs

LMAE -
Skipped 3 LSBs LMAE ——

Skipped 4 LSBs

® tiny
® small
* medium
e large

Branch Entropy
(Average Linear)

Branch Entropy
(Yokota)

90% Branch
Instructions

Total Unique
Branch

Instructions

LMAE ——
Skipped
10 LSBs

LMAE —
Skipped 9
LSBs

LMAE -
Skipped 8 LSBS

LMAE —
Skipped 7 LSBs.

LMAE ——
Skipped 6
LMAE —— LSBs
Skipped 5
LSBs

¥

Subset of AIWC Metrics

Table 1: Sample of metrics collected by AIWC — ordered by type.

Type Metric Description
Compute Opcode total # of unique opcodes required to cover 90% of dynamic instructions
Compute Total Instruction Count total # of instructions executed
Parallelism Work-items total # of work-items or threads executed
Parallelism Total Barriers Hit total # of barrier instructions
Parallelism Median ITB median # of instructions executed until a barrier
Parallelism Max IPT maximum # of instructions executed per thread
Parallelism Mean SIMD Width mean # of data items operated on during an instruction
Memory Total Memory Footprint total # of unique memory addresses accessed
Memory ~ 90% Memory Footprint # of unique memory addresses that cover 90% of memory accesses
Memory Unique Read/Write Ratio indication of workload being (unique reads / unique writes)
Memory Reread Ratio indication of memory reuse for reads (unique reads/total reads)
Memory Global Memory Address Entropy ~ measure of the randomness of memory addresses
Memory Local Memory Address Entropy measure of the spatial locality of memory addresses
Control Total Unique Branch Instructions total # of unique branch instructions
Control 90% Branch Instructions # of unique branch instructions that cover 90% of branch instructions
Control Yokota Branch Entropy branch history entropy using Shannon's information entropy
Control Average Linear Branch Entropy branch history entropy score using the average linear branch entropy
OAK RIDGE

National Laboratory

AIWC Usage

oclgrind --aiwc ./kmeans -p 0 -d 0 -t 0 -- -g -p 2566 -f 30

e The collected metrics are logged as text in the command line interface during execution and
also in a csv file, stored separately for each kernel and invocation.

¢ Files can be found in the working directory with the naming convention aiwc_a_f.csv.

* Where « is the kernel name and (3 is the invocation count — the number of times the kernel
has been executed.

%OAK RIDGE

National Laboratory

AIWC Overheads

Table 2: Overhead of the AIWC tool on the £ft benchmark and the Intel i7-6700K CPU.

time memory
usage (ms) increase usage (MB) increase
without AIWC | with AIWC without AIWC | with AIWC
tiny 0.04 73.4 | ~1830x 80.0 85.9 1.07x
small 0.2 427.8 | ~2800x 75.9 149.0 1.96x
medium 2.9 12420 ~4300x 101.4 636.8 6.28x
large 19.6 69300 ~3540x 203.8 2213.2 10.86x%

* large problems, may exmaine fewer iterations, or run on machines with more virtual memory.

 Envisaged use is that AIWC is only run once, for instance, to examine the characteristics of
the kernel in order to identify suitability for accelerators or verify that a high degree of
SIMD vectorization had been achieved.

OAK RIDGE

National Laboratory

¥

AIWC Example IV

Opeode o acc b
Imbalance Branch Entropy « calc_alpha
(Average Linear) « calc_beta
« calc_gamma
Branch Entro .
Granularity 1 okotm) Py o calc_xi
 esta
e est b
90% Branch * estpi
Barriers Per Instruction Instructions « init_alpha
« init_beta
< init_ones
ot Unique® MVM_ON_kernel_naive
Instructions Per otal Unique, - ym_trans_kernel_naive
Operand Inotacrions * S_dot_kemel_naive
_ « scale_a
scale_alpha
scale_b
Total Memory LMAE ——
Footprint Skipped
10LsBs
90% Memory LMAE —
Footprint Skipped 9
P LsBs
Global Memory LMAE -
Address Entropy Skipped 8 LSBs
LMAE —— , LMAE ——
Skipped 1LSBs Skipped 7 LSBs
LMAE -~ : LMAE --
Skipped Skipped 6
20sBs AE - Lsss
LMAE - Skipped 5
AE ——
Skipped 31SBs _ LMAE ipped

Skipped 4 LSBs

Figure 21: Highlighting the variance in features between kernels in the hmm benchmark.
%OAKRIDGE

National Laboratory

A larger AIWC Corpus

e Just a sample of 2 of 11 applications
e Similar breakdown of 37 more kernels from the remainder of EOD suite
* Presented in a docker & jupyter artefact

%OAK RIDGE

National Laboratory

https://github.com/BeauJoh/aiwc-opencl-based-architecture-independent-workload-characterization-artefact

Sample of the AIWC Corpus

II'Iy Kernel Kernel
ral & J poesd & o o
& & f;’f & N4 ¢ S e A
Pl ST 25 g &?f w;w v e y*g;ﬁ?;‘igy%x bepbiote b»,,@gwif'f\f%s:ﬁf@if
LI, ALY w’.w SO AR AL e R R A AR OO RAS S e i
<
1
0.50 050
025 025

R
Wnoo

Count
coooo
coooo

12
8
4
100 Medium Large 100
078 1 I 07
o= I-.-J &
050 P - 060

Count
wnod

Kernel Kernel

OAK RIDGE)
%Nnﬁon al Laboratory Metric [Ill Branch Entropy (Linear Average) [ll Opcode [l Barriers Per Instruction Global Memory Address Entropy

Itemize Test

¢ What happens now?
- if we use sublists?
= and other things. ..
e Test again
- and now

¢ one more unto the breach,
¢ dear friends,
* once more

1) What happens now?
1) if we use sublists?
2) and other things. ..
2) Test again
1) and now — why worry about counting yourself?
1) blah
2) blah
3) blah

%OAK RIDGE

National Laboratory

