
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

IRIS Scheduling Experiments with DAGGER

IRIS Mini Workshop CY22

Beau Johnston
Oak Ridge National Laboratory

4 Jan 2022

https://csmd.ornl.gov/group/programming-systems johnstonbe@ornl.gov

https://csmd.ornl.gov/group/programming-systems

1

IRIS

● The Intelligent Runtime System (IRIS) is a powerful tool, it enables:
– Multiple languages and backends to be used in a common runtime.
– Queues can be shared between devices. (Task queue to Device queue).
– It promotes a genuine heterogeneous workflow — Systems with multiple accelerators from
different vendors exist, but runtimes to leverage them historically lacking.

– It handles dependencies between tasks
– manages underlying language implementations of tasks

2

A whole can of worms!

● However this exposes the additional complexity around how to schedule! How do we:
– Target an optimal device for a given task? (given increasingly heterogeneous systems)
– Memory transfers still expensive (since most heterogenous systems utilize PCI-E to
communicate with devices), this latency is high and implies memory transfers should be
avoided.

– As applications have more complex workflows (the chains of tasks to schedule gets longer) the
more complexity we have to manage.

3

DAGGER
● Directed Acyclic Graph Generator for Evaluating Runtimes
● Simple Python Program which generates a task-graph of arbitary length and complexity
● Generated DAGs plug directly into IRIS (as JSON)
● Used to validate and test different schedulers, and generally stress-test IRIS

Figure 1: CLI DAGGER usage.

4

Quick Compositions (I)

Figure 2: Demo of using DAGGER to change parameters.

5

Quick Compositions (II)
● Each task in the DAG to represent a kernel task.
● Changing the min and max widths can increase the opportunities for concurrency:

Figure 3: Demo of using DAGGER to change parameters to increase potential concurrency.

6

Quick Compositions (III)

● Support for multiple different kernel tasks—each task is coloured uniquely according to the
kernel name.

Figure 4: Demo of using DAGGER to change parameters to increase potential concurrency.

7

Quick Compositions (IV)
● There is an option to provide a mean and standard-deviation to the Cumulative Density
Function to change the shape of the DAG, for instance:

Figure 5: Demo of using DAGGER to change CDF parameters to change shape.

8

Quick Compositions (V)

● The number of skips allows us to skip up to the maximum number of levels between tasks
to have as a dependency, for instance:

Figure 6: Demo of using DAGGER to increase levels between dependencies.

9

DAGGER to IRIS

Figure 7: DAGGER generated output running in IRIS.

10

DAGGER Recap

● DAGGER gives us a simple tool to generate different DAGs to examine the performance of
(and stress-test) IRIS.

● Let’s apply some interesting payloads. . .

11

Experimental Systems

Figure 8: ExCL Systems running IRIS.

12

The Case for a Smart IRIS Scheduling Policy

● Consider one of the simplest DAGs:

Figure 9: Simple Linear-10 DAG.
● When run on IRIS. . .

13

The Case for a Smart IRIS Scheduling Policy (continued)

0 2 4 6 8 10 12 14
Time (s)

Tesla V100-SXM2-16GB #0

Tesla V100-SXM2-16GB #1

Tesla V100-SXM2-16GB #2

Tesla V100-SXM2-16GB #3

Tesla V100-SXM2-16GB #4

Tesla V100-SXM2-16GB #5

Ac
ce

le
ra

to
r

Linear10 on Leconte (CUDA) Policy: Round-Robin
task0
task1
task2
task3
task4
task5
task6
task7
task8
task9
transferfrom-ijk-buffer0-instance0
transferto-ijk-buffer1-instance0
transferto-ijk-buffer2-instance0

Figure 10: Roundrobin Linear-10 DAG (filtered).

14

The Case for a Smart IRIS Scheduling Policy (continued)

● Argh Memory Transfers!

0 2 4 6 8 10 12 14
Time (s)

Tesla V100-SXM2-16GB #0

Tesla V100-SXM2-16GB #1

Tesla V100-SXM2-16GB #2

Tesla V100-SXM2-16GB #3

Tesla V100-SXM2-16GB #4

Tesla V100-SXM2-16GB #5

Ac
ce

le
ra

to
r

Linear10 on Leconte (CUDA) Policy: Round-Robin
D2H
H2DNP
task0
task1
task2
task3
task4
task5
task6
task7
task8
task9
transferfrom-ijk-buffer0-instance0
transferto-ijk-buffer1-instance0
transferto-ijk-buffer2-instance0

Figure 11: Roundrobin Linear-10 DAG (less filtered).

15

IRIS Scheduling Policies

IRIS built-in policies include:

1) All,
2) Any,
3) Random,
4) Profiling-Aware
5) Locality-Aware
6) Device number/type

16

Choosing the right policy for the job. . .

6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3
Time (s)

Tesla V100-SXM2-16GB #0

Ac
ce

le
ra

to
r

Linear10 on Leconte (CUDA) Policy: Depend
task0
task1
task2
task3
task4
task5
task6
task7
task8
task9
transferfrom-ijk-buffer0-instance0
transferto-ijk-buffer1-instance0
transferto-ijk-buffer2-instance0

Figure 12: Linear-10 DAG with a dependency policy.

17

There can’t be only one!

● Just one example of how different DAG structures generated from DAGGER will favor
different built-in IRIS policies.

● For brevity, I omit studies into all the IRIS systems and Scheduling policies—lots of
permutations!

● But, can we avoid having the user specify the policy?
– It requires them know the shape of the DAG,
– Type of operations (each kernel performs/which accelerator type should be used),
– Available accelerators and general system configuration (this become increasingly system
specific),

– Scales poorly (human error and manual) as we move IRIS codes between multiple systems,
– Size of the memory?

● What would we need to consider to have a truly smart policy?

18

Factors for Smart IRIS Scheduling Policies

● Aaron’s HUNTER can validate correctness of IRIS scheduler trace, and serve as oracle for
scheduling time(s).

● Baseline system performance would need be collected to determine relative score.
– Task latency
– Accelerator performance over the system (Peak GFLOPs)
– Memory transfer-time (or latency and bandwidth)

● Prediction of execution time of each kernel/task run
– Could be addressed with the performance policy (but requires a kernel be run on all available
accelerators for the initial comparison)

– AIWC & Random-Forest/ML methods could be applied
● Thankfully, complexity of dependencies already preserved (in task-dag), so at runtime we
know how immutable task-chain/description.

– How far can we reliably look-ahead for scheduling?

19

Microbenchmarks – Task Latency

Radeon Explorer

Oswald Equinox Leconte

1 10 10
0

10
00 1 10 10

0
10

00

1 10 10
0

10
00 1 10 10

0
10

00 1 10 10
0

10
00

−100

0

100

200

300

−100

0

100

200

300

Number Of Kernel Launches

La
te

nc
y

 K
er

ne
l l

au
nc

h
ov

er
he

ad
 (

µs
)

 #
 k

er
ne

l l
au

nc
he

s

Backend

CUDA

HIP

OpenCL

Implementation

Native

IRIS

MultiDevice

Figure 13: Comparison of latency involved in executing increasing number of tasks (and over an
increasing number of devices).

20

Microbenchmarks – System Performance (Peak GFLOPs)

0

300

600

900

1200

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Concurrent Device Enqueues

G
F

LO
P

s
(D

ou
bl

e
P

re
ci

si
on

)
System

Equinox

Explorer

Leconte

Oswald

Radeon

Figure 14: Performance Scaling from increasing devices on a compute-intensive DGEMM kernel.

21

Microbenchmarks – Transfer Time

−25

0

25

50

75

100

0.
00

09
76

56
25

 K
iB

0.
00

39
06

25
 K

iB

0.
01

56
25

 K
iB

0.
06

25
 K

iB

0.
25

 K
iB

1
KiB

4
KiB

16
 K

iB

64
 K

iB

25
6

KiB

10
24

 K
iB

40
96

 K
iB

16
38

4
KiB

65
53

6
KiB

Size of Memory Buffer

Tr
an

sf
er

 T
im

e
(m

s)

Backend

CUDA

HIP

Figure 15: Time required to transfer increasing sized packets over PCI-E.

22

Prototype – Prediction per Task

IRIS Runtime
(PolicyGuided.cpp/h & AIWC.cpp/h)

Data Collection
(./GP_collect_data.sh)

Prediction
(./query_model.R & RCpp)

Model Training
(./GP_build_model.sh)

New Kernel

AIWC Feature
Extraction

EOD Benchmark
Suite

Architecture
Independent

Metrics

Architecture
Independent

Metrics

Performance
Results

Select Device
with Shortest

Execution Time

Random Forest
Model Generator

Predicted
Execution

Times

Model

Predictor

LibSciBench
Measurements

Yes

Load AIWC
Metrics

AIWC Feature
Extraction

Architecture
Independent

Metrics
Save AIWC

Metrics

Compute Hash Filename

No
Check If
Filename

Exists

List Devices and
Append Names

Figure 16: Workflow of performance predictions in IRIS.

23

Conclusions

● IRIS is a powerful tool, it enables portability of codes originally written for specific
accelerators—also complex iterations between these tasks.

● DAGGER can generate synthetic payloads to test IRIS (stress and correctness), and develop
scenarios to handicap specific policies.

● Prebuilt policies are a necessary step in evaluating IRIS—but there may be a better option!
Let’s use these to see!

24

Future Work

● Comprehensive study to show shortcomings of each built-in scheduler policy—yet to
determine the best DAG for each policy.

● In IRIS, broader tasks can be composed of multiple (sub)commands, such as, memory
transfers and kernel executions. Do we treat these as “hints” as largely atomic/indivisible
chunks of work which should be completed on a single accelerator?

● Apply AIWC and Random-Forest predictive policy (to see relative performance).

25

Workload characterization with AIWC

● Architecture-Independent Workload Characterization (AIWC)
● Plugin for OclGrind – an Extensible OpenCL device simulator1
● Beta available – https://github.com/ANU-HPC/Oclgrind – and will be merged into default
OclGrind

● Simulation of OpenCL kernels occur on LLVM IR – SPIR
● AIWC tracks and measures hardware agnostic events
● Metrics carefully selected and collected during simulator execution
● Large number of metrics collected (28)
● Over a wide spectrum computation, thread communication and memory access patterns
● Supports parallel workloads
● Accessible – as part of OclGrind
● High-accuracy – full resolution, not interrupt/sample driven

1J. Price and S. McIntosh-Smith, “Oclgrind: An extensible opencl device simulator,” in Proceedings of the 3rd International Workshop on
OpenCL, 2015, p. 12.

https://github.com/ANU-HPC/Oclgrind

26

AIWC Example

● Four major classes: Compute, Parallelism,
Memory, Control

● Different statistics per metric –
distributions, entropy and absolute counts

0

0.25

0.5

0.75

1

Opcode

Granularity

Barriers Per Instruction

Instructions Per Operand

Load Imbalance

Total
Memory
Footprint

90%
Memory
Footprint

Global Memory
Address Entropy

LMAE −−
Skipped 1 LSBs

LMAE −−
Skipped
2 LSBs

LMAE −−
Skipped 3 LSBs LMAE −−

Skipped 4 LSBs

LMAE −−
Skipped 5

 LSBs

LMAE −−
Skipped 6

 LSBs

LMAE −−
Skipped 7 LSBs

LMAE −−
Skipped 8 LSBs

LMAE −−
Skipped 9

LSBs

LMAE −−
Skipped
10 LSBs

Total Unique
Branch

Instructions

90% Branch
Instructions

Branch Entropy
(Yokota)

Branch Entropy
(Average Linear)

tiny
small
medium
large

LUD Perimeter

27

AIWC Example II

● Local Memory Address Entropy
● Kernel launched 4 times – over different
problem sizes

● Starting entropy changes with problem size,
but same gradient → memory access
patterns are the same regardless of actual
problem size

● Steeper descent → more localised memory
access → better cache utilization

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

0

2

4

6

8

10

12

2 4 6 8 10

of Bits Skipped

M
em

or
y

A
dd

re
ss

 L
oc

al
 E

nt
ro

py

Invocation #
●

●

●

●

0
1
2
3

LUD Perimeter LMAE on tiny

28

AIWC Example III

0

0.25

0.5

0.75

1

Opcode

Granularity

Barriers Per Instruction

Instructions Per Operand

Load Imbalance

Total
Memory
Footprint

90%
Memory
Footprint

Global Memory
Address Entropy

LMAE −−
Skipped 1 LSBs

LMAE −−
Skipped
2 LSBs

LMAE −−
Skipped 3 LSBs LMAE −−

Skipped 4 LSBs

LMAE −−
Skipped 5

 LSBs

LMAE −−
Skipped 6

 LSBs

LMAE −−
Skipped 7 LSBs

LMAE −−
Skipped 8 LSBs

LMAE −−
Skipped 9

LSBs

LMAE −−
Skipped
10 LSBs

Total Unique
Branch

Instructions

90% Branch
Instructions

Branch Entropy
(Yokota)

Branch Entropy
(Average Linear)

tiny
small
medium
large

LUD Diagonal

0

0.25

0.5

0.75

1

Opcode

Granularity

Barriers Per Instruction

Instructions Per Operand

Load Imbalance

Total
Memory
Footprint

90%
Memory
Footprint

Global Memory
Address Entropy

LMAE −−
Skipped 1 LSBs

LMAE −−
Skipped
2 LSBs

LMAE −−
Skipped 3 LSBs LMAE −−

Skipped 4 LSBs

LMAE −−
Skipped 5

 LSBs

LMAE −−
Skipped 6

 LSBs

LMAE −−
Skipped 7 LSBs

LMAE −−
Skipped 8 LSBs

LMAE −−
Skipped 9

LSBs

LMAE −−
Skipped
10 LSBs

Total Unique
Branch

Instructions

90% Branch
Instructions

Branch Entropy
(Yokota)

Branch Entropy
(Average Linear)

tiny
small
medium
large

LUD Internal

29

Subset of AIWC Metrics

Table 1: Sample of metrics collected by AIWC – ordered by type.

Type Metric Description
Compute Opcode total # of unique opcodes required to cover 90% of dynamic instructions
Compute Total Instruction Count total # of instructions executed
Parallelism Work-items total # of work-items or threads executed
Parallelism Total Barriers Hit total # of barrier instructions
Parallelism Median ITB median # of instructions executed until a barrier
Parallelism Max IPT maximum # of instructions executed per thread
Parallelism Mean SIMD Width mean # of data items operated on during an instruction
Memory Total Memory Footprint total # of unique memory addresses accessed
Memory 90% Memory Footprint # of unique memory addresses that cover 90% of memory accesses
Memory Unique Read/Write Ratio indication of workload being (unique reads / unique writes)
Memory Reread Ratio indication of memory reuse for reads (unique reads/total reads)
Memory Global Memory Address Entropy measure of the randomness of memory addresses
Memory Local Memory Address Entropy measure of the spatial locality of memory addresses
Control Total Unique Branch Instructions total # of unique branch instructions
Control 90% Branch Instructions # of unique branch instructions that cover 90% of branch instructions
Control Yokota Branch Entropy branch history entropy using Shannon’s information entropy
Control Average Linear Branch Entropy branch history entropy score using the average linear branch entropy

30

AIWC Usage

oclgrind --aiwc ./kmeans -p 0 -d 0 -t 0 -- -g -p 256 -f 30

● The collected metrics are logged as text in the command line interface during execution and
also in a csv file, stored separately for each kernel and invocation.

● Files can be found in the working directory with the naming convention aiwc_α_β.csv.
● Where α is the kernel name and β is the invocation count – the number of times the kernel
has been executed.

31

AIWC Overheads

Table 2: Overhead of the AIWC tool on the fft benchmark and the Intel i7-6700K CPU.

time memory
usage (ms) increase usage (MB) increase

without AIWC with AIWC without AIWC with AIWC
tiny 0.04 73.4 ≈1830× 80.0 85.9 1.07×
small 0.2 427.8 ≈2800× 75.9 149.0 1.96×
medium 2.9 12420 ≈4300× 101.4 636.8 6.28×
large 19.6 69300 ≈3540× 203.8 2213.2 10.86×

● large problems, may exmaine fewer iterations, or run on machines with more virtual memory.
● Envisaged use is that AIWC is only run once, for instance, to examine the characteristics of
the kernel in order to identify suitability for accelerators or verify that a high degree of
SIMD vectorization had been achieved.

32

AIWC Example IV

0

0.25

0.5

0.75

1

Opcode
Imbalance

Granularity

Barriers Per Instruction

Instructions Per
 Operand

Total Memory
Footprint

90% Memory
Footprint

Global Memory
Address Entropy

LMAE −−
Skipped 1 LSBs

LMAE −−
Skipped
2 LSBs

LMAE −−
Skipped 3 LSBs LMAE −−

Skipped 4 LSBs

LMAE −−
Skipped 5

 LSBs

LMAE −−
Skipped 6

 LSBs

LMAE −−
Skipped 7 LSBs

LMAE −−
Skipped 8 LSBs

LMAE −−
Skipped 9

 LSBs

LMAE −−
Skipped
10 LSBs

Total Unique
Branch

 Instructions

90% Branch
Instructions

Branch Entropy
(Yokota)

Branch Entropy
(Average Linear)

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ● ●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

acc_b
calc_alpha
calc_beta
calc_gamma
calc_xi
est_a
est_b
est_pi
init_alpha
init_beta
init_ones
mvm_non_kernel_naive
mvm_trans_kernel_naive
s_dot_kernel_naive
scale_a
scale_alpha
scale_b

Figure 21: Highlighting the variance in features between kernels in the hmm benchmark.

33

A larger AIWC Corpus

● Just a sample of 2 of 11 applications
● Similar breakdown of 37 more kernels from the remainder of EOD suite
● Presented in a docker & jupyter artefact

https://github.com/BeauJoh/aiwc-opencl-based-architecture-independent-workload-characterization-artefact

34

Sample of the AIWC Corpus

inv
er

t_
m

ap
pin

g

km
ea

ns
Poin

t

ca
lc_

po
te

nt
ial

_s
ing

le_
ste

p_
de

v

lud
_d

iag
on

al

lud
_in

te
rn

al

lud
_p

er
im

et
er

cs
r

fft
Rad

ix1
6K

er
ne

l

fft
Rad

ix8
Ker

ne
l

c_
Cop

yS
rc

To
Com

po
ne

nt
s

cl_
fd

wt5
3K

er
ne

l

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

bf
s_

ke
rn

el1

bf
s_

ke
rn

el2

ac
c_

b_
de

v

ca
lc_

alp
ha

_d
ev

ca
lc_

be
ta

_d
ev

ca
lc_

ga
m

m
a_

de
v

ca
lc_

xi_
de

v

es
t_

a_
de

v

es
t_

b_
de

v

es
t_

pi_
de

v

ini
t_

alp
ha

_d
ev

ini
t_

be
ta

_d
ev

ini
t_

on
es

_d
ev

m
vm

_n
on

_k
er

ne
l_n

aiv
e

m
vm

_t
ra

ns
_k

er
ne

l_n
aiv

e

sc
ale

_a
_d

ev

sc
ale

_a
lph

a_
de

v

sc
ale

_b
_d

ev

s_
do

t_
ke

rn
el_

na
ive

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

ne
ed

le_
op

en
cl_

sh
ar

ed
_2

cr
c3

2_
sli

ce
8

0.00
0.25
0.50
0.75

0

5

10

15

0.00
0.01
0.02
0.03
0.04

0

4

8

12

Kernel

C
ou

nt

inv
er

t_
m

ap
pin

g

km
ea

ns
Poin

t

ca
lc_

po
te

nt
ial

_s
ing

le_
ste

p_
de

v

lud
_d

iag
on

al

lud
_in

te
rn

al

lud
_p

er
im

et
er

cs
r

fft
Rad

ix1
6K

er
ne

l

fft
Rad

ix4
Ker

ne
l

c_
Cop

yS
rc

To
Com

po
ne

nt
s

cl_
fd

wt5
3K

er
ne

l

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

bf
s_

ke
rn

el1

bf
s_

ke
rn

el2

ac
c_

b_
de

v

ca
lc_

alp
ha

_d
ev

ca
lc_

be
ta

_d
ev

ca
lc_

ga
m

m
a_

de
v

ca
lc_

xi_
de

v

es
t_

a_
de

v

es
t_

b_
de

v

es
t_

pi_
de

v

ini
t_

alp
ha

_d
ev

ini
t_

be
ta

_d
ev

ini
t_

on
es

_d
ev

m
vm

_n
on

_k
er

ne
l_n

aiv
e

m
vm

_t
ra

ns
_k

er
ne

l_n
aiv

e

sc
ale

_a
_d

ev

sc
ale

_a
lph

a_
de

v

sc
ale

_b
_d

ev

s_
do

t_
ke

rn
el_

na
ive

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

ne
ed

le_
op

en
cl_

sh
ar

ed
_2

cr
c3

2_
sli

ce
8

0.00
0.25
0.50
0.75
1.00

0

5

10

15

0.00
0.01
0.02
0.03
0.04

0

5

10

15

Kernel

C
ount

Tiny Small

inv
er

t_
m

ap
pin

g

km
ea

ns
Poin

t

ca
lc_

po
te

nt
ial

_s
ing

le_
ste

p_
de

v

lud
_d

iag
on

al

lud
_in

te
rn

al

lud
_p

er
im

et
er cs

r

fft
Rad

ix1
6K

er
ne

l

fft
Rad

ix8
Ker

ne
l

c_
Cop

yS
rc

To
Com

po
ne

nt
s

cl_
fd

wt5
3K

er
ne

l

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

bf
s_

ke
rn

el1

bf
s_

ke
rn

el2

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

ne
ed

le_
op

en
cl_

sh
ar

ed
_2

cr
c3

2_
sli

ce
8

0.00
0.25
0.50
0.75
1.00

0
5

10
15

0.00
0.01
0.02
0.03
0.04

0
5

10
15
20

Kernel

C
ou

nt

inv
er

t_
m

ap
pin

g

km
ea

ns
Poin

t

lud
_d

iag
on

al

lud
_in

te
rn

al

lud
_p

er
im

et
er cs

r

fft
Rad

ix1
6K

er
ne

l

fft
Rad

ix2
Ker

ne
l

c_
Cop

yS
rc

To
Com

po
ne

nt
s

cl_
fd

wt5
3K

er
ne

l

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

bf
s_

ke
rn

el1

bf
s_

ke
rn

el2

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

ne
ed

le_
op

en
cl_

sh
ar

ed
_2

cr
c3

2_
sli

ce
8

0.00
0.25
0.50
0.75
1.00

0
5
10
15

0.00
0.01
0.02
0.03
0.04

0
5
10
15
20

Kernel

C
ount

 Medium Large

Metric Branch Entropy (Linear Average) Opcode Barriers Per Instruction Global Memory Address Entropy

35

Itemize Test

● What happens now?
– if we use sublists?
– and other things. . .

● Test again
– and now

● one more unto the breach,
● dear friends,
● once more

1) What happens now?
1) if we use sublists?
2) and other things. . .

2) Test again
1) and now – why worry about counting yourself?

1) blah
2) blah
3) blah

