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ABSTRACT

Tiling matrix operations can improve the load balancing and per-
formance of applications on heterogeneous computing resources.
Writing a tile-based algorithm for each operation with a traditional,
hand-tuned tiling approach that uses for loops in C/C++ is cum-
bersome and error prone. Moreover, it must enable and support
the heterogeneous memory management of data objects and also
explore architecture-supported, native, tiled—-data transfer APIs in-
stead of copying the tiled data to continuous memory before the
data transfer. The tiling framework provides a tiled data structure
for heterogeneous memory mapping and parameterization to a
heterogeneous task specification API. We have integrated our tiled
framework into MatRIS (Math kernels library using IRIS). IRIS is
a heterogeneous run-time framework with a heterogeneous pro-
gramming model, memory model, and task execution model. Ex-
periments reveal that the tiled framework for BLAS operations has
improved the programmability of tiled BLAS and improved perfor-
mance by ~20% when compared against the traditional method that
copies the data to continuous memory locations for heterogeneous
computing.
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1 INTRODUCTION

Math libraries used in high-performance computing (HPC) are
facing important challenges [2] due to ever-growing heterogene-
ity in current and future computer systems. Static decision-based
mapping, which maps the math kernel to specific compute unit,
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is an outdated approach. Attempting to manually coordinate and
schedule data placement/computation, which types of processors
to select for certain calculations, and when computations will occur
is becoming an intractable problem due to the growing complexity,
diversity, and scale of HPC systems.

Researchers have developed tiled algorithms for math kernels to
distribute their loads on multiple compute units and for scalability
purposes. However, these algorithms are best suited for load distri-
bution of homogeneous compute units but not for heterogeneous
compute units. Compared with tiled algorithms for homogeneous
compute units, the heterogeneous tiled algorithms require tiling
specifications and must also manage the heterogeneous device mem-
ories and heterogeneous task creation. There is no tiling framework
approach in the state of the art for heterogeneous tiling that handles
both tiling specification and heterogeneous memories.

This paper proposes a unique tiling framework that binds a run-
time specific heterogeneous device memory object handler to each
tile. It also proposes the necessary sequence iterators and index-
based tile access APIs for writing the tiled algorithms in a more
readable and performance efficient way. Our approach is perfor-
mance efficient because it seamlessly enables native architecture—
specific 2D and 3D data transfer APIs for the tiled data movements.
The proposed tiled framework handles the run-time system inter-
nally, and it is completely abstracted from the programmer, who
can focus on writing the tiled program with operations between
tiles. The proposed approach uses the IRIS [7] run-time framework
for heterogeneous task creation and to handle heterogeneous mem-
ories.

We evaluated our tiled framework with two tiled algorithms:
tiled matrix multiplication [8] and tiled LU factorization [9]. The
proposed tiling framework for heterogeneous systems has achieved
a ~20% performance uplift when compared against a traditional,
hand-tuned tiling approach that does not explore the native 2D/3D
data transfer APIs.

2 BACKGROUND
2.1 IRIS

IRIS [7] is a programming system for extremely heterogeneous
architectures that enables application developers to write portable
applications across diverse heterogeneous programming platforms,
including CUDA, HIP, Level Zero, OpenCL, and OpenMP. IRIS
orchestrates multiple programming platforms in a system into a
single execution/programming environment by providing portable
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Figure 1: The IRIS architecture.

tasks and shared virtual device memory. Figure 1 illustrates the
IRIS architecture.

IRIS provides a task-based programming model in which a task
is a scheduling unit. A task runs on a single device, and it is portable
across any compute device in the system, including accelerators
(e.g., AMD and NVIDIA GPUs, FPGAs). A task contains zero or
more commands. There are four types of commands: host-to-device
memory copy command, device-to-host memory copy command,
kernel launch command, and host command. A task can have a
dependency on other tasks. When a task depends on other tasks,
it cannot start until the prerequisite tasks complete. Therefore,
writing an IRIS application means building directed acyclic graphs
of tasks. Each task has a target device selection policy when it is
submitted. The policy is specified by programmers, and it can be
a device number, type (e.g., CPU, GPU, FPGA, DSP), or built-in
policies (e.g., random, locality-aware, profile) provided by IRIS.

To achieve application portability and flexible task scheduling
with effective data orchestration, IRIS provides shared virtual device
memory across multiple, disjoint physical device memories. IRIS
automatically transfers data across multiple devices to keep memory
consistency across tasks. Therefore, all compute devices can share
memory objects in the shared virtual device memory, and they can
see the same content in the memory objects.

2.2 IRIS-BLAS

Still under development, IRIS-BLAS [8] is a novel, performance-
portable BLAS library intended to address the portability challenges
of BLAS for different heterogeneous architectures. IRIS-BLAS is
built on top of the IRIS run-time and supports multiple vendor
and open-source BLAS libraries, including OpenBLAS [13], Intel
MKL [6], NVIDIA cuBLAS [10], and AMD hipBLAS [1]. In a hetero-
geneous system, IRIS-BLAS offloads the appropriate BLAS library
kernel based on the task mapping at run-time. Thus, IRIS-BLAS
is portable across a broad spectrum of architectures and BLAS li-
braries, thereby alleviating the worry of modifying the application
source code. The effectiveness of IRIS-BLAS has been demonstrated
on different CPUs (e.g., Intel Xeon Skylake, AMD 249 EPYC 7763,
Qualcomm Snapdragon ARM cores) and GPUs (e.g,. NVIDIA A100,
AMD MI100, Qualcomm Snapdragon Adreno). Although its objec-
tive is portability, IRIS-BLAS also provides competitive or even
better performance compared with other state-of-the-art reference
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libraries [3]. By providing a vendor library kernel at run-time, IRIS-
BLAS provides an important building block for implementing com-
plex linear algebra algorithms.

2.3 LaRIS

LaRIS [9] (LaPACK library on the IRIS run-time) is a performance-
portable LaPACK library that exploits the computational capabil-
ities of a heterogeneous system to the fullest extent by using pa-
rameterized and auto-tuned tiled algorithms. LaRIS facilitates the
inclusion of algorithm-specific performance models to guide sched-
uling in heterogeneous systems. Figure 2 shows the LaRIS software
stack. Tiling is required to utilize all processors in a heterogeneous
system, thereby enabling processing for larger matrix sizes. LaRIS
provides automatic tiling and reconstructing. The tiling occurs be-
fore the creation of tasks and dependencies. While creating the
graph, LaRIS associates memory chunks for different tiles to differ-
ent tasks.
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Figure 2: LaRIS and IRIS-BLAS software stack.

3 RELATED WORK

Although some tiling-based algorithms exist in the state of the
art [5], they were proposed for homogeneous compute units or
handled with rudimentary loop indexes with increments of indexes,
and it is extremely difficult for the programmer to handle these tiles,
and they are error prone. A small error in index usage in the tiled
algorithm can lead to errors in run-time, and the issue then becomes
more difficult to identify. Hence, a tiling framework is required to
facilitate the programming of tiled algorithms. There are domain-
specific compilers [4, 11, 12] defined for tiling. However, these
approaches are defined for individual compute units (e.g., CPUs,
GPUgs, accelerators) but not for heterogeneous computing per se.
The tiling for heterogeneous computing poses a new challenge of
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how to manage the heterogeneous memories for tiles and how these
tiled objects must be used to create tiled tasks for heterogeneous
computing.

4 PROPOSED TILING FRAMEWORK

Tiling for heterogeneous computing involves dividing the matri-
ces into tiles and managing the heterogeneous memories for the
tiles. The proposed tiling framework addresses the configuration
of tiling by binding the host tile memory object to IRIS memory for
heterogeneous memory handling, provides iterators to access the
tiles either in sequence or through indexing, and provides zip-on
tiling iterators to ease the writing of tiled algorithms. The Tile2D
data structure and its member variables and interfaces are shown
in Figure 3.

Tile2DlIterator Tile2D<Type>

+ Tile2Dlterator(type)| | + Tile2D()

+ operator!=() +IRISMem ()

+ operator*() + row_tile_index()

+ operator++() + col_tile_index()

+top :Tiling2D<Type>
*

Tileing2D<Type>

+Tiling2D()

+ begin()

+end()

+ items(it_type,
repeat_count)

+ getAt(row, col)

- row_stride_

- col_stride_

- tile_row_size_

- tile_col_size_

- row_size_

- col_size_

- tiles_ : Tile2D[]

Figure 3: Tiling2D data structure with interfaces.

4.1 Configuration

The tiling object should be flexible enough to configure the tile
specification and bind the tile to an IRIS memory object for the
given input matrix.

4.1.1 Tile specification. The tile specification includes the size of
the matrix in all dimensions and the size of the tile and stride be-
tween two adjacent tiles in all dimensions. The size of tile indicates
the number of elements in the tile in each dimension. Stride in-
dicates the offset between two adjacent tiles and is required for
operations in which stride is a parameter for each dimension (e.g.,
convolution, image processing filters). As shown in Figure 3, the
Tiling2D data structure has member variables for each 2D tile spec-
ification parameter and similar specification member variables for
3D tiling as well. The Tiling2D data structure maintains an array of
Tile2D objects, in which each Tile2D object represents a row-tile
index parameter and a column-tile index parameter. The Tile2D
object also binds to an IRIS memory object.

4.1.2  Binding to IRIS memory. Binding a tile to an IRIS memory
object is a unique and novel approach required for heterogeneous
computing. Figure 4 illustrates the binding of a tile to an IRIS mem-
ory object. This binding enables the tiling data structure to map
the tiles to heterogeneous memory locations through IRIS, and the
programmer can focus on using these tiles to define the operations.
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Tiling objects will define the IRIS memory objects for tiles, manage
the heterogeneous memories of kernels on these tiles, and manage
the data transfers on these tiles via IRIS, thereby easing the process
of writing tiled algorithms.

Another advantage of binding tiles to an IRIS memory object is
that it maintains the tile host memory for the IRIS memory object
with offsets from the base/start address of the matrix. Tile binding
enables the IRIS memory to explore the architecture-supported,
native, tiled-memory copy (data transfer) operations on the host
memory'’s tile instead of first copying the tiled host memory to
sequential memory. This copy would otherwise be an additional
overhead in the traditional approach without a native tiled-memory
copy operation (e.g., cudaMemcpy2D for CUDA GPUs, hipMem-
cpy2D for AMD GPUs). One can always write these APIs, but our
tiling framework simplifies and abstracts the issue from program-
mers and enables them to focus on their actual work. Furthermore,
this approach may enhance the performance of tiled algorithm exe-
cution when compared against traditional tiling because it avoids
the memory copy of the host tile to a sequential memory address
space in another host memory location.

DO[ D1} D2

H

2D Data transfer
(cudaMemcpy2D)
if D2 is CUDA GPU

Matrix with Tiles: Tile2D[]

Figure 4: Binding an IRISMem object with a tile; IRISMem host memory
(H) points to the matrix’s base (B) start address with a 2D offset (X, Y).

4.2 Iterators

A tiling object should provide the necessary iterators, and it should
be extendable. Operations on tiles need two types of iterators (1) se-
quence iterators for regularized controlled access and (2) indexed-
based iterators for irregular or complex tile access.

4.2.1 Sequence iterators. The matrix addition with a tiled algo-
rithm requires the iterators of both input matrices, A and B, in the
same direction, such as iterating the tiles in column-wise fashion
for each row (row major) or iterating the tiles in row-wise fashion
for each column (column major). We have provided three types of
sequence iterators for heterogeneous tiling operations: (1) a row
major iterator, (2) a column major iterator, and (3) a right-down
tree-wise iterator for LU factorization.

4.2.2  Index-based iterators. A tiled matrix multiplication operation
can be defined in multiple ways, but the input matrices must be
iterated in different directions (e.g., A matrix in column major order
and B matrix in row major order). Moreover, the A and B matrix tiles
must be accessed multiple times. This cannot be directly represented
with a zip iterator with multiple sequence iterators of A and B. More
complex examples include a tiled convolution operation. In these
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scenarios, it is best to access the tiles by using indexing. An example
of a tiled matrix multiplication is shown in Figure 6.

4.3 Zip-on Tiling Iterators

A zip iterator enables parallel iteration over several controlled
sequence iterators (i.e., A, B, and C iterators) simultaneously, as
shown in Figure 5. This approach would be useful for all regular
sequence-based tiling iterators for point-wise operators (e.g., matrix
addition, matrix subtraction, dot product, logical operators). The
point-wise matrix operator would access the input tile only once
in a predefined sequence iterator, either in row major or column
major.

int tiled_matris_addition( int target, double *A, double *B, double *C, int
< SIZE, int tile_size) {
Tiling2D<double> A_tiling(A, SIZE, SIZE, tile_size, tile_size);
Tiling2D<double> B_tiling(B, SIZE, SIZE, tile_size, tile_size);
Tiling2D<double> C_tiling(C, SIZE, SIZE, tile_size, tile_size);
iris_graph graph; iris_graph_create(&graph);
vector<iris_task> tasks;
for(auto && it : zip(A_tiling.items(), B_tiling.items(), C_tiling.items()) {
iris_task task; iris_task_create(&task);
Tile2D<double> & A_tile = std::get<0>(it);
Tile2D<double> & B_tile = std::get<1>(it);
Tile2D<double> & C_tile = std::get<2>(it);
matris_task_add_matrix(task, A_tile.IRISMem(),
B_tile.IRISMem(), C_tile.IRISMem());
iris_graph_task(graph, task, target);
)
iris_graph_submit(graph);

Figure 5: Zip iterator used in a tiled matrix addition.

4.4 Tiled Algorithm Examples

4.4.1 Tiled matrix addition. Figure 5 shows an example of a tiled
matrix addition algorithm. This algorithm requires regular sequenc-
ing of tiles in row-major order for two input matrices, A and B, and
for the output matrix, C. The matris_task_matrix_addition is
a heterogeneous BLAS API call for the addition of two matrices,
and it takes IRIS memory objects as inputs and outputs, which are
bonded to a tile in the host matrix’s address space. The IRIS memory
object creations, the tiling index management, and the data trans-
fers on the tiles are completely abstracted from the programmer. A
zip iterator is used to simultaneously iterate both input and output
tiles.

4.4.2  Tiled matrix multiplication (DGEMM,). 1t is not possible to
use zip for matrix multiplication, which requires fine-grain control
of tile access inputs and outputs using their tile indexes. Hence, we
have used index-based tiling access for tiled matrix multiplication
algorithm, as shown in Figure 6.

4.4.3 LU factorization. The tiled matrix LU factorization algorithm
is shown in Figure 7. This is a non-recursive approach. In the top-
level iterator, the tiles are accessed by using the right-down tree-
wise iterator. This iterator first accesses the first row of tiles by
starting from the (0, 0) index and then accesses the first column of
tiles by starting from (0, 0). After iterating through the first row
and the first column, the iterator proceeds with the second row and
the second column by starting from index (1, 1) and continues until
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int tiled_matris_multiplication( int target, double *A, double *B, double *C,
< int SIZE, int tile_size) {
Tiling2D<DTYPE> A_tiling(A, SIZE,
Tiling2D<DTYPE> B_tiling(B, SIZE, SIZE, tile_size,
Tiling2D<DTYPE> C_tiling(C, SIZE, SIZE, tile_size,
iris_graph graph; iris_graph_create(&graph);
for(size_t i=0; i<A_tiling.row_tiles_count(); i++) {
for(size_t j=0; j<B_tiling.col_tiles_count(); j++) {
Tile2D<DTYPE> & c_tile = C_tiling.getAt(i, j);
iris_task prev_task = NULL;
for(size_t k=0; k<B_tiling.row_tiles_count(); k++) {
Tile2D<DTYPE> & a_tile = A_tiling.getAt(i, k);
Tile2D<DTYPE> & b_tile = B_tiling.getAt(k, j);
iris_task task; iris_task_create(&task);
matris_task_dgemm
(task, MATRIS_ROW_MAJOR,
a_tile.row_tile_size(),
b_tile.col_tile_size(),
1.0f, a_tile.IRISMem(), tile_size,
b_tile.IRISMem(), tile_size,
1.0f, c_tile.IRISMem(), tile_size);
if (prev_task != NULL) {
iris_task gemm_depend_tasks[] = { prev_task };
iris_task_depend(task, 1, gemm_depend_tasks);

SIZE, tile_size, tile_size);
tile_size);

tile_size);

MATRIS_NO_TRANS, MATRIS_NO_TRANS,
b_tile.row_tile_size(),

)
iris_graph_task(graph, task, target_dev);
prev_task = task;

iris_task_dmem_flush_out(prev_task, c_tile.IRISMem());
}

}
iris_graph_submit(graph);

Figure 6: Tiled matrix multiplication with index-based tile
accesses.

it reaches the last row and the last column of the tile. For each tile
access in the top iterator, it will apply the following algorithm:

o If the row tile index and column tile index are the same for
the tile, then it is considered an entry into a new step of the
LU factorization. If it is step 0 (first step), then the GETRF
operation is applied to this tile. Otherwise, the DGEMM oper-
ation is applied on all tiles in the step followed by the GETRF
on the new step’s entry tile. The second-level DGEMM iter-
ator uses a simple row major iterator but starts with (step,
step) indexing. However, no DGEMM operation is applied
for the first step (i.e., [0, 0]). This algorithm creates the nec-
essary DGEMM and GETREF tasks, passes the appropriate
input and output IRISMem memory objects, and creates the
appropriate task dependencies.

o If the row tile index is same as the current step, then apply

the left TRSM operation with an assumption that the input

is already in column major/transposed.

If the column tile index is the same as the current step, then

apply the top TRSM operation.

5 EXPERIMENTAL RESULTS

Although the proposed tiling framework makes writing the tiled
algorithms easier for heterogeneous computing, the effectiveness of
the tiling framework itself can be demonstrated with two metrics:
(1) the overhead of the tiling framework and (2) the performance
enhancement of tiling with native tile data transfers. These two
metrics were derived on a truly heterogeneous system with multi-
core AMD EPYC CPUs (128 CPU cores), four NVIDIA A100 GPUs,
and four AMD MI100 GPUs. We considered two benchmarks for
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int tiled_matris_lufactorization( int target, double *A,
int SIZE, int tile_size) {
Tiling2D<DTYPE> A_tiling(A, SIZE, SIZE, tile_size, tile_size);
size_t n_row_tiles = A_tiling.row_tiles_count(),
n_col_tiles = A_tiling.col_tiles_count();
iris_task getrf_tasks[n_row_tiles], gemm_tasks[n_row_tiles][n_col_tiles];
iris_task top_trsm_tasks[n_col_tiles], left_trsm_tasks[n_row_tiles];
size_t step = 0;
for(auto & a_tile : A_tiling.items(TILE2D_RIGHT_DOWN_TREE_WISE)) {
if (a_tile.row_tile_index() == a_tile.col_tile_index()) {
// First check whether GEMM has to be applied and proceed with GETRF
step = a_tile.row_tile_index();
if (step != 0) for(auto & gemm_tile : A_tiling.items(step, step)) {
size_t tile_jj = gemm_tile.row_tile_index();
size_t tile_ii = gemm_tile.col_tile_index();
Tile2D<DTYPE> & left_trsm_tile = A_tiling.getAt(step-1, tile_ii);
Tile2D<DTYPE> & top_trsm_tile = A_tiling.getAt(tile_jj, step-1);
iris_task task; iris_task_create(&task);
laris_task_dgemm(graph, task, target, left_trsm_tile.IRISMem(),
top_trsm_tile.IRISMem(), gemm_tile.IRISMem(), tile_size);
if (step-1 == 0) {
iris_task gemm_depend_tasks[] = {
left_trsm_tasks[tile_ii], top_trsm_tasks[tile_jj] };
iris_task_depend(task, 2, gemm_depend_tasks);
}
else {
iris_task gemm_depend_tasks[] = { left_trsm_tasks[tile_ii],
top_trsm_tasks[tile_jjl, gemm_tasks[tile_jjl[tile_iil };
iris_task_depend(task, 3, gemm_depend_tasks);

}
gemm_tasks[tile_jjl[tile_iil = task;
3}
// Now Do GETRF: GETRF of new step
iris_task_create( &getrf_tasks[stepl);
laris_graph_getrf(getrf_tasks[step], target,
step, tile_size, a_tile.IRISMem() );
if (step !=0) {
iris_task getrf_depend_tasks[] = { gemm_tasks[stepl[step] };
iris_task_depend(getrf_tasks[step], 1, getrf_depend_tasks);
3}

else if (a_tile.row_tile_index() == step) {
// Do LEFT TRSM (Assuming it is transformed)
size_t tile_ii = a_tile.col_tile_index();
Tile2D<DTYPE> & getrf_tile = A_tiling.getAt(step, step);
iris_task_create(&left_trsm_tasks[tile_iil);
laris_left_graph_trsm(graph, left_trsm_tasks[tile_ii], target,
step, tile_size, getrf_tile.IRISMem(), a_tile.IRISMem());
iris_task parent_gemm_task=NULL;
if (step != 0) parent_gemm_task = gemm_tasks[step][tile_ii];
iris_task trsm_depend_tasks[] = {
getrf_tasks[step], parent_gemm_task };
iris_task_depend(left_trsm_tasks[tile_ii], 2, trsm_depend_tasks);

else if (a_tile.col_tile_index() == step) {
// Do TOP TRSM (Assuming it is transformed)
size_t tile_jj = a_tile.row_tile_index();
Tile2D<DTYPE> & getrf_tile = A_tiling.getAt(step, step);
iris_task_create(&top_trsm_tasks[tile_jjl);
laris_top_graph_trsm(graph, top_trsm_tasks[tile_jjl, target,
tile_size, getrf_tile.IRISMem(), a_tile.IRISMem());
iris_task parent_gemm_task = NULL;
if (step != 0) parent_gemm_task = gemm_tasks[tile_jjl[step];
iris_task trsm_depend_tasks[] = {
getrf_tasks[step], parent_gemm_Task };
iris_task_depend(top_trsm_tasks[tile_jjl, 2, trsm_depend_tasks);
3}
}
iris_graph_submit(graph);

Figure 7: Tiled LU factorization algorithm.

these experiments: tiled matrix multiplication (IRIS-BLAS) and LU
factorization (LaRIS).

5.1 Overhead of Tiling Framework

We compared our tiling framework overhead with traditional, hand-
written tiling with indexes, as shown in Figure 8. The overhead
is the time taken to create heterogeneous tasks and a task graph
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with our tiling framework. We compared the times for our frame-
work against the traditional, hand-tuned tiling approach. Our tiling
framework’s overhead is significantly lower (in the order of mi-
croseconds) when compared with the traditional method. In the
traditional approach, the tiled algorithm loops handle tiling indexes
but are error prone. Our tiling framework approach needs less code
to write the tiled algorithms, and the overhead of iterators is com-
parable to the traditional approach. Our results are consistent for
both the tiled DGEMM operation and the tiled LU factorization. The
varying x-axis (tile count) leads to a varying number of tasks in the
task graph. Our tiling framework overhead for an increasing num-
ber of tasks is still negligible when compared with the traditional,
hand-tuned tiling approach.
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2 100000
o m Traditional Hand-tuned Tiling
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o 1000
o
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Figure 8: Overhead of tiling framework compared with traditional, hand-
tuned tiling. Average overhead when compared with traditional approach is
~90 microseconds.

5.2 Performance Enhancement with Native Tile
Data Transfers

Our tiling framework enables native 2D/3D tile data transfer APIs
(i.e., for CPUs and GPUs) to transfer the data from a host tile to
device memory through the IRIS run-time to provide performance
enhancement of a tiled algorithm’s execution on heterogeneous
computing resources. The comparison of these two approaches
for the tiled DGEMM and LU factorization algorithms is shown in
Figure 9. We varied the matrix size, as shown on the x-axis, and
measured the execution time of a tiled algorithm’s task graph. The
traditional, hand-tuned approach introduces a memory copy opera-
tion for flattening the tile to a continuous host memory location.
On average, we observed a ~20% performance uplift compared with
the traditional approach.
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Figure 9: Performance enhancement of tiling framework with native tile
data transfer APIs (Execution time in log scale)

5.3 Source Code Reduction

We were able to significantly reduce the amount of source code
required for these operations in our tiling framework: a 78% reduc-
tion for the tiled GEMM algorithm and a 45% reduction for the tiled
LU factorization. The tiled GEMM application is more complex to
write when using traditional tiling with indexes.

Table 1: Source code reduction (lines of code) with our tilling
framework.

Algorithm Traditional Proposed | Line reduction
Tiling Lines | Tiling Lines
Tiled GEMM 230 50 78%
Tiled LU Factorization 125 68 45%

5.4 Future Work

The tiling framework described here addresses the challenges and
burdens associated with writing tiled algorithms by handling the
heterogeneous tile objects and enabling the creation of heteroge-
neous computing tasks with the tile objects. Adding a domain-
specific compiler to our tiling framework could make it even more
robust for writing the simplified tiled algorithms, and this is future
work.

6 CONCLUSION

We proposed and described a novel framework for writing tiled
algorithms for heterogeneous computing. This unique tiling frame-
work creates the tiles, handles the heterogeneous memory objects,
and enables them to be used to create heterogeneous tasks for

Miniskar et al.

heterogeneous computing. Our approach simplifies writing the
tiled algorithms and is also performance efficient when compared
against the traditional, handwritten tiling approaches, which do
not exploit the architecture-native tile data transfer APIs. The gains
are ~20% when compared to traditional approaches.
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