
Toward Performance Portable Programming for
Heterogeneous Systems on a Chip: A Case Study

with Qualcomm Snapdragon SoC
Anthony Cabrera, Seth Hitefield, Jungwon Kim, Seyong Lee, Narasinga Rao Miniskar, and Jeffrey S. Vetter

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831-6173

Email: {cabreraam, hitefieldsd, kimj, lees2, miniskarnr, and vetter}@ornl.gov

Abstract—Future heterogeneous domain-specific systems on
a chip (DSSoCs) will be extraordinarily complex in terms of
processors, memory hierarchies, and interconnection networks.
To manage this complexity, architects, system software designers,
and application developers need programming technologies that
are flexible, accurate, efficient, and productive. These technologies
must be as independent of any one specific architecture as
is practical because the sheer dimensionality and scale of the
complexity will not allow porting and optimizing applications
for each given DSSoC. To address these issues, the authors are
developing Cosmic Castle, a performance portable programming
toolchain for streaming applications on heterogeneous archi-
tectures. The primary focus of Cosmic Castle is on enabling
efficient and performant code generation through the smart
compiler and intelligent runtime system. This paper presents
the preliminary evaluation of the authors’ ongoing work toward
Cosmic Castle. Specifically, this paper details the code-porting
efforts and evaluates various benchmarks on the Qualcomm
Snapdragon SoC using tools developed through Cosmic Castle.

I. Introduction
Heterogeneous and manycore processors are becoming the

de facto architectures for both traditional high-performance
computing (HPC) systems and domain-specific systems on a
chip (DSSoCs). One critical challenge of these architectures
is programmability. Numerous active efforts are working to
improve programmability and portability, including directive-
based programming models [1], [2], library application pro-
gramming interfaces (APIs) [3], [4], and parallel programming
languages [5]. However, experiences with GPUs [6], [7] and
Knights Landing [8] illustrate how difficult it is to obtain
performance close to that offered by the native programming
environment for a given system. Rapidly changing system
architectures also further complicate this issue.

Several programming solutions of varying maturity and
performance have been developed to, in part, enable perfor-
mance portability. Notable solutions include OpenCL [5], [9],

Notice: This manuscript has been authored by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the US Department of Energy (DOE).
The US government retains and the publisher, by accepting the article for
publication, acknowledges that the US government retains a nonexclusive, paid-
up, irrevocable, worldwide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for US government purposes. DOE
will provide public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

OpenACC [1], [6], [10], [11], and OpenMP [2], [12]–[14].
Library and meta-programming solutions (e.g., cuBLAS [15],
Thrust [16], Legion [3], Kokkos [4]) have also demonstrated
promise. Still, programming these systems may require signif-
icant architectural expertise, and the current solutions often
lack performance portability. Domain-specific languages are
another approach for addressing productivity, performance, and
portability issues in programming modern architectures [17]–
[21]. However, these approaches require that all of a given
application’s kernels must be rewritten with domain-specific
languages and often focus on specific architectures that lack
mature programming environments or community support.

To this end, the authors present Cosmic Castle, a software
ecosystem that provides performance portable programming
solutions for heterogeneous and manycore processors and deep
memory hierarchies while balancing against programmability.
To achieve this goal, the authors’ proposed solution leverages
existing efforts as much as possible by integrating software tools
from vendors and the community into the ecosystem to find the
best portable, performant, and sustainable solutions. This is an
ongoing project. This paper focuses on the main programming
system of Cosmic Castle and evaluates its effectiveness and
potential as a performance portable programming system. The
Qualcomm Snapdragon line of SoCs is used as a case study.
This paper details the process of integrating the existing
Snapdragon tooling with the authors’ tools in Cosmic Castle,
and porting several benchmarks from various application
domains onto the Snapdragon SoC.

The main contributions of this paper are as follows.
• This paper describes Cosmic Castle, a performance

portable programming toolchain for porting applications on
heterogeneous architectures, which consists of the smart com-
piler, Open Accelerator Research Compiler (OpenARC) [10],
and the Intelligent Run Time System (IRIS) [22].

• This paper provides an example of using Cosmic Castle
on the Qualcomm Snapdragon SoC in terms of its architectures
and their implications on programming with emphasis on the
Hexagon digital signal processor (DSP).

• This paper evaluates the effectiveness and potential of
the proposed Cosmic Castle programming system by porting
several benchmarks from different application domains onto
the Snapdragon SoC.

II. Qualcomm Snapdragon Architecture
and Programming

The Qualcomm Snapdragon line of SoCs is a versatile
embedded processor that includes powerful ARM CPU cores
along with accelerators such as GPU and DSPs. It has been
a viable solution for developing mobile applications, such
as multimedia/vision processing, 5G networking, artificial
intelligence, and Internet Protocol cameras. The Snapdragon
855 and 865 chipsets are widely used in commercial mobile
platforms (e.g., smartphones and tablets) by vendors such as
Samsung, LG, Motorola, OPPO, and Xiomi.

A. Architecture and Programming
Qualcomm Snapdragon 855 and 865 provide heterogeneous

compute capability at different levels, as shown in Figure 1.
They offer different variants of compute units, such as Dy-
namic IQ big.LITTLE multicore ARM cores, Adreno GPU,
Hexagon DSP, and Spectra 360 (480 for 865 chipset). These
compute elements are targeted through different programming
models, such as C/C++ with OpenMP for multicore ARM
cores; OpenCL, OpenGL, Vulkan, and DirectX for GPU; and
C/C++ and assembly language for Hexagon DSP.

Quad Little Cores (CPU 0-3)

Qualcomm System Fabric

Adreno 640/650

(384/512) x 2 ALUs

1 MB On-chip
Memory
250 to 600 MHz

ARM A55
L1D

64 KB
L1I

64 KB

L2 (128 KB)
300 MHz to 1.8 GHz

3 Big Cores (CPU 4-6)

ARM A76/A77
L1D

64 KB
L1I

64 KB

L2 (256 KB)
710 MHz to 2.4 GHz

Primary Core (CPU 7)

ARM A76/A77
L1D

64 KB
L1I

64 KB

L2 (512KB)
825 MHz to 2.8 GHz

Hexagon 690/698
1024b Vector

Units

Tensor
Accelerator

576 MHz

L3 (2 / 4 MB)

LPDDR4/LPDDR5

4 Channel

2.1 GHz

6 to 16 GB

Spectra
380/480
Camera

ISP

X24 +
X50/
X55

LTE+5G
Modem

CDSP ADSP MDSP

* SD 855/865

Fig. 1: Snapdragon 855 and 865 with heterogeneous compute units.

1) big.LITTLE ARM CPUs
The Snapdragon 855 and 865 chipsets include the Kryo series

of CPUs, which are based on ARM-based CPUs. Although
there are eight ARM-based cores, they are not symmetric. The
Snapdragon chipset has four low-power Cortex-A55 cores (i.e.,
LITTLE cores) and four high-performance Cortex-A77/A76
cores (i.e., big cores), and one of these cores acts as the
“prime” core. Moreover, the cache sizes of these cores are also
different. The prime core has a dedicated 512 KB L2 cache,
whereas each of the other big cores have a dedicated 256
KB L2 cache. Multithreading of these cores can be exploited
through the OpenMP programming model or by using the
pthread library.

The LITTLE cores (cores 0–3) are operable at 18 frequency
scale modes ranging from 300 MHz to 1.8 GHz. The big

cores (cores 4–6) can operate at 17 frequency scale modes
ranging from 710 MHz to 2.4 GHz. The prime core (core 7)
can run at 20 frequency scale modes ranging from 825 MHz
to 2.8 GHz. The frequency of each core can be set at run time
or through the Linux shell.

2) Adreno GPU
The Snapdragon 855 chipset also contains the Adreno 640

GPU, which is used for mobile chipsets and was developed
by Qualcomm. It is used for 2D/3D graphics acceleration. The
Adreno 640 GPU has 384 × 2 arithmetic logic units (ALUs)
and supports unified memory addressing. It has 1 MB on-chip
graphic memory, and its frequency can be scaled from 250
to 600 MHz. However, it is unclear how its frequency can be
changed through programming.

3) Hexagon DSP, NPU, and Spectra ISP
The Spectra 360 is an image and signal processor (ISP),

which is a hardware accelerator for computer vision. Hexagon
DSP is used to efficiently process multimedia algorithms. It
also has a tensor accelerator and a dedicated neural processing
unit (NPU) for efficiently processing deep neural networks. The
core Hexagon DSP is a Very Large Instruction Word (VLIW)
architecture and is supported with hardware multithreading.
There are three variants of Hexagon DSPs available: the audio
DSP (ADSP) for audio processing, compute DSP (CDSP) for
compute-intensive tasks, and modem DSP (MDSP) for X24
LTE/5G modems. The CDSP has 1,024 bit vector functional
units. The ADSP and CDSP are programmable through C/C++
and assembly language. CDSP vector functional units require
special Hexagon Vector Extensions (HVX) instructions. These
instructions are either manually embedded in the hexagon
kernel (C/C++) or can be generated by the auto-vectorizing
compiler feature provided by the Qualcomm Hexagon software
development kit (SDK) toolchain. Spectra ISP, MDSP, and NPU
can be used through dedicated APIs provided by Qualcomm.

§II-B discusses optimization of the Snapdragon Hexagon
DSP in more detail.

B. Designing and Optimizing Applications for
Hexagon DSP

As described in §II-A3, the Hexagon DSPs in the Snapdragon
SOC are VLIW processors equipped with a 1,024 bit vector
coprocessor. The benefit of offloading computation to Hexagon
DSPs is that the hardware is significantly less complex than
the ARM CPUs and are clocked slower. Paired with the
potential for vectorized computation, this enables the possibility
of accelerated computation relative to the CPUs while also
consuming less power. This is particularly beneficial for
enabling heavier computation workloads at the edge.

However, the Hexagon DSPs are notoriously difficult to
program. Although the Snapdragon CPU and GPU can be
targeted by using OpenMP and OpenCL, respectively, no
such model exists for the DSP. Additionally, the DSP is a
VLIW processor, and writing efficient code to target this
processing paradigm requires architecture-specific knowledge
of the DSP. Finally, the documentation and example programs
for the Hexagon DSP are not as rich as other vectorized

compute solutions, such as the Intel Streaming SIMD (single
instruction, multiple data) Extensions and Advanced Vector
Extensions or the ARM Neon vector extensions. For example,
Intel and ARM both have online, user-friendly documentation
of their vector intrinsics for their various vector units [23],
[24]. Although examples exist in the Hexagon SDK, they are
not well documented, and choices made in the source code are
not immediately obvious. Additionally, the Hexagon DSP SDK
is a framework entirely separate from the native Android build
environment, which is required to build applications that target
the platform. This additional framework is yet another thing
that must be learned to build applications for this platform.

This section decreases the sparsity in the literature regarding
how to program the Hexagon DSP and shows the authors’
progress toward designing and optimizing applications that
leverage the Hexagon DSP.

1) Creating a Hexagon DSP Application
FastRPC: Fast remote procedure call (FastRPC) is the

framework that allows transparent remote calls from the
host processor to the DSP. Specifically, this is what enables
users to offload computation to the DSP. This is done by
generating a stub and skeleton, or skel, library that handles
communication between the host and device. The stub and
skel libraries reside on the host and DSP sides, respectively,
and are autogenerated based on the user-provided interface
definition language (IDL) of Qualcomm Another IDL Compiler
(QAIC). The file extension for this specification is .idl.
Accompanying this is an implementation of rpcmem, which
allows users to allocate physically contiguous memory and
physically shared memory between the host and DSP.

Make.d Build Environment: Code for DSP kernels can
be created by using GNU Make, but the documentation
that accompanies the Hexagon SDK recommends using a
Qualcomm-developed GNU Make library called Make.d. The
goal of this library is to relieve some of the difficulty on
creating a makefile from scratch. Both AArch64 and Hexagon
DSP codes are supported in this library.

A general makefile is supplied as part of the Make.d
build environment that can be reused across different projects,
but users are responsible for supplying .min files that
describe the flags, source and include paths, libraries to be
linked, and so on specific to the user’s application. The
DSP and CPU are conventionally named android.min and
hexagon.min, respectively. The CPU and DSP also require
android_deps.min and hexagon.min files. These are
responsible for listing the variants that are supported by the
design (e.g., 32 bit or 64 bit ARM binaries) or a specific
version of the Hexagon DSP architecture. Once each of these
files is created, the make command must be invoked twice:
once to build the Android side application code and once to
build the Hexagon DSP code.

Obtaining a Handle to the DSP Domain: To target one
of the DSPs available on Snapdragon, users must acquire a
handle to that DSP’s domain. Users must provide the universal
resource identifier, which is autogenerated by the QAIC IDL
tools, and a pointer to the resulting handle.

Creating Hexagon DSP Kernels: DSP kernels can be
created using C, C++, or Hexagon assembly languages. For
a function to be called by the host processor, users must
implement a function with a signature that matches the one
specified in the aforementioned .idl file.

It is possible to create multithreaded DSP applications, and
this is done by using functionality provided by the dspCV
library in the Hexagon DSP. Contrary to the name, this library
has more functionality outside of computer vision tasks.

Another feature is the 1,024 bit vector coprocessor. This
processor implements an instruction set called HVX. Although
it cannot execute floating-point operations, it can execute integer
and fixed-point operations. One of the difficult aspects in
leveraging the coprocessor is that users must specify their
design by using either assembly code or vector intrinsics.
Crafting assembly code might allow users to extract the most
performance possible for a given DSP design because users
can craft an instruction schedule not attainable by the supplied
compiler. The opposite end of this spectrum is to try to make
the compiler auto-vectorize the code.

III. Cosmic Castle Framework
In §II, the architectural diversity and programming com-

plexity of the Snapdragon SoC demonstrate the complex
problem on programming heterogeneous SoCs. To address these
problems, the authors propose Cosmic Castle, a framework for
performance portable programming on heterogeneous DSSoCs.
Cosmic Castle is a performance modeling-based, multilevel
hardware-software integration strategy that will provide a
methodology for projecting application ontologies onto pro-
gramming systems, operating systems, and hardware. Cosmic
Castle develops solutions across areas such as performance
modeling and software tools to enable a development ecosystem
that exercises the full capability of the highly programmable
system and intelligent scheduling to manage the set of domain
resources in the context of specific applications. This is
an ongoing project, and this paper focuses on the main
programming system of Cosmic Castle, which consists of
the heterogeneous task run time system, IRIS, and its front-
end compiler, OpenARC. This section introduces the IRIS
runtime and OpenARC compiler and their deployment on the
Snapdragon SoCs to demonstrate the potential of Cosmic Castle
for heterogeneous DSSoC programming.

A. IRIS : Intelligent Run Time System
Achieving functional and performance portability in het-

erogeneous programming is challenging. Programmers must
write the code blocks in the application to the target accel-
erators by using their vendor-specific programming systems
(e.g., NVIDIA CUDA, AMD HIP, Intel oneAPI, Qualcomm
Hexagon SDK). To fully exploit the power of all heterogeneous
compute elements present in a given system, programmers
must manually author and assign the code blocks/kernels to
a specific accelerator and maintain them. This results in poor
code performance portability and low programmer productivity.

Qualcomm
OpenCL
Runtime
Library

LLVM
OpenMP
Runtime
Library

Qualcomm
Hexagon
Runtime
Library

Hexagon
DSP

Adreno
GPU

Kryo
CPU

Task

Task

Task Task

OpenMP
Kernel

Hexagon
Kernel

OpenCL
Kernel

Device Memory

Kryo
CPU

Dynamic
Platform
Loader

Task
Scheduler

IR
IS

IRIS API
Host Code
C/C++/FortranLo

w
er

Le

ve
l

Po
lic
y

Po
lic
y

Po
lic
y

Po
lic
y

Task

To
ol

ch
ai

ns

Qualcomm
Hexagon

IDL
Compiler

Stub Skel

Android
NDK

LLVM/Clang

OMP Kernel
Shared Lib

Android
NDK

LLVM/Clang

Application
Executable

FastRPC

O
penCL JIT Com

pilation

OpenMP Compiler

OpenMP Application

OpenACC Compiler

OpenACC Application
H

ig
h

Le
ve

l

Host Mem

LPDDR4

Host

Fig. 2: IRIS for Snapdragon.

Although OpenCL was one solution proposed to address
parts of this problem, not all hardware accelerators support
OpenCL. As extremely heterogeneous architectures become
more widespread [25], this could become a serious burden to
application programmers. Also, data transfers and synchroniza-
tions among different types of accelerators remain obstacles
for achieving easy programming and high performance.

To address these challenges, the authors designed and
implemented IRIS, a new run time system for heterogeneous
architectures [22]. IRIS dynamically catalogs and manages
all the heterogeneous hardware accelerators in the system. At
initialization, IRIS discovers and enumerates the heterogeneous
capabilities on a node, including their preferred program-
ming models (e.g., OpenMP, CUDA, HIP, oneAPI, Hexagon,
OpenCL). IRIS enables programmers to write portable appli-
cations across diverse heterogeneous architectures.

B. IRIS on Snapdragon
For a preliminary evaluation of the IRIS framework, the

authors designed and implemented IRIS for Snapdragon.
Figure 2 shows the overview of IRIS for Snapdragon. As
explained in §II, the target Snapdragon 855 consists of Kryo
CPUs, Adreno GPU, and Hexagon DSP. Qualcomm provides
the programmers with the Qualcomm OpenCL framework
and Hexagon DSP SDK for their Adreno GPUs and Hexagon

DSPs, respectively. IRIS uses both programming frameworks to
manage the GPU and DSP devices. To target Kryo CPUs, IRIS
uses OpenMP. An IRIS application for Snapdragon consists of
the host code written with the IRIS C/C++/Fortran API and
three native kernels: OpenMP for CPU, OpenCL for GPU, and
Hexagon for DSP.

Programmers can build the application executable from
the host code by using the Android Native Development Kit
(NDK) LLVM/Clang compiler toolchain. The OpenMP kernel
is also compiled to the OpenMP kernel shared library by using
the same toolchain. The OpenCL kernel does not need to
be compiled to the binary because the Qualcomm OpenCL
framework for Adreno GPUs supports the Just-In-Time (JIT)
OpenCL kernel compilation during the application execution.
The Qualcomm Hexagon IDL compiler compiles the Hexagon
kernel and builds the skel shared library for the DSP and the
stub shared library for the CPU to enable Qualcomm FastRPC.
The Qualcomm FastRPC allows tasks to be offloaded to DSP
from CPU. The stub hides the serialization of function call
parameters and the network-level communication to present
a simple invocation mechanism to the application on CPU.
skel is responsible for dispatching the call to the actual
remote object implementation on DSP.

When the application runs, the dynamic platform loader
in IRIS loads the Qualcomm OpenCL runtime shared library,
Hexagon DSP SDK runtime shared library, and OpenMP kernel
shared library at run time to execute the kernels on top of the
loaded programming platforms.

Fig. 3: OpenARC System Overview.

C. OpenARC as a Front-End IRIS Compiler
As shown in §III-B, IRIS supports multiple different target-

specific native kernels (e.g., OpenMP, OpenCL, CUDA). The
programmer usually authors these kernels. To automatically
generate target-specific kernels from directive-based high-level
programming models (e.g., OpenACC and OpenMP) for use
in IRIS, the authors leveraged OpenARC [10] as the front-end
IRIS compiler. OpenARC is a research compiler framework
developed at Oak Ridge National Laboratory that compiles

and optimizes an input the OpenACC/OpenMP4 program for
various target architectures, including CPUs, NVIDIA/AMD/In-
tel GPUs, Xeon Phis, Intel field-programmable gate arrays
(FPGAs), and nonvolatile memory systems (e.g., Fusion-IO
ioScale) [26], [27]. OpenARC offers a high-level intermediate
representation and extensible annotation framework, which
makes it suitable for various source-to-source translation and
instrumentation studies. The high-level abstraction and various
directive extensions offered by OpenARC make it easy to
understand, access, and transform input programs so that the
same application can be adapted differently, depending on the
characteristics of target systems [28].

D. OpenARC-IRIS Integration
The original implementation of OpenARC generates multiple

output programming models (e.g., CUDA, OpenCL, OpenMP,
HIP), depending on the target architecture, but it only sup-
ports one back-end programming model or device type at
a time. To better program and concurrently support diverse
heterogeneous types of devices by using directive-based high-
level programming models (e.g., OpenACC, OpenMP) where
each device could require different back-end programming
models (e.g., CUDA, OpenCL, OpenMP), the authors integrated
OpenARC with IRIS (§ III-A). As shown in Figure 3, the new
integrated OpenARC system uses IRIS as the common device
runtime abstraction, which allows a single application written
via a directive-based high-level programming model to exploit
multiple types of devices available in the target system by
automatically translating the high-level OpenACC/OpenMP4
program into multiple different back-end programming models
and intermixing them (e.g., CUDA, OpenCL, OpenMP).

In the new OpenARC/IRIS framework, all types of kernel
codes are generated during one invocation of the compiler while
still allowing for the application of various architecture-specific
optimizations, such as: (1) exploiting device-specific memories
(e.g., CUDA shared/texture memory); (2) reduction optimiza-
tion to exploit FPGA-specific special hardware mechanisms,
such as shift registers; and (3) sliding window optimization to
avoid redundant memory accesses across loop iterations and
hide memory latency using hardware buffers [11], [29]. The
authors also optimized the OpenARC/IRIS interface in which
an additional compiler pass automatically merges IRIS tasks
that belong to the same OpenACC construct. Additionally, the
new optional runtime API can be used to automatically merge
multiple IRIS tasks across different OpenACC constructs if
users guarantee its safety. This can reduce OpenARC/IRIS
interfacing overheads.

IV. Evaluation
This section evaluates the effectiveness of the proposed

Cosmic Castle programming system by porting benchmarks
from different application domains to heterogeneous compute
units available in the Snapdragon SoC and comparing their
performance against other traditional HPC devices (e.g., Intel
Xeon E5-2683 CPU, AMD EPYC 7742 CPU, ARM Thun-
derX2 CPU, NVIDIA P100 GPU). The tested device-specific

0

10000

20000

30000

40000

50000

60000

70000

Ope
nM

P-
AR

M
CD

SP

CD
SP

+H
VX

 (A
ut
o)

CD
SP

+H
VX

 (H
an

d-
op

tim
ize

d)

Ope
nC

L-
Ad

rin
o

Ope
nM

P-
AM

D
EP

YC
 7
74

2

Ope
nM

P-
Int

el-
Xe

on
-E
5-

26
83

Ope
nC

L-
Te

sla
 P
10

0-
PC

IE-
12

GB

CU
DA-

Te
sla

 P
10

0-
PC

IE-
12

GB

Ope
nM

P-
Th

un
de

rX
2

SAXPY (1M) SOBEL (1920x1080)

Ex
ec

ut
io

n-
Ti

m
e

(u
se

c)

ADSP /

Fig. 4: SAXPY and Sobel filter benchmarking.

kernels (e.g., OpenMP, OpenCL, CUDA), except for the hand-
optimized versions, are automatically generated by OpenARC
from the corresponding input OpenACC programs.

A. Performance Comparison of Heterogeneous
Compute Units in Snapdragon SoC

The authors benchmarked SAXPY and Sobel filter kernels to
compare the effectiveness of Snapdragon compute units when
compared with Intel, AMD, ThunderX2, and NVIDIA compute
resources, and the results are shown in Figure 4. The execution
time includes kernel execution time and IRIS runtime overhead.
It was also compared with HPC CPU and GPU computing
resources. The AMD EPYC 7742 system has two EPYC 7742
processors, and each processor has 64 cores with simultaneous
multithreading enabled and 1 TB of main memory running at
a maximum frequency of 2.25 GHz. The Intel Xeon E5-2683
system has 32 cores in two sockets running at a maximum
frequency of 3 GHz and has 256 GB of main memory. The
ARM ThunderX2 system has two CPUs, each with 28 cores
with 4 threads per core. ThunderX2 has 128 GB of main
memory and is running at a maximum frequency of 2.5 GHz.

The authors listed the programming model (i.e., OpenMP,
OpenCL, and CUDA) used for each compute resource. For
CDSP, the kernel is written in C/C++ and is interfaced through
Hexagon FastRPC. The Hexagon CDSP without HVX results
are 43% worse than those of OpenMP-ARM (with NEON
through auto-vectorization) optimizations. The authors observed
similar results with ADSP of the Snapdragon board. The HVX
instructions can be generated through the auto-vectorization
feature, and the results are 40% better than those of OpenMP-
ARM. The hand-optimized HVX code running on CDSP
(shown only for the Sobel filter under CDSP+HVX/hand-
optimized) results in a 3.2× gain compared with OpenMP-
ARM. The OpenCL code running on the Adreno GPU of the
Snapdragon SoC also results in performance similar to that of
CDSP with hand-optimized HVX code. The effectiveness of
Snapdragon computing resources were compared with NVIDIA,
Intel, AMD, and ThunderX2 computing resources. Snapdragon
Adreno/CDSP resources are 3× worse than NVIDIA Tesla

P100 GPU results. However, its performance is comparable
with that of ThunderX2.

Sobel kernel

2%

Kernel RPC

Overhead

10%

Memcpy

62%

ION

Allocations

26%

Fig. 5: Sobel filter run on hexagon DSP with run-time split.

The authors further analyzed the execution time of the Sobel
filter when executing on the Hexagon DSP. The results of this
analysis are shown in Figure 5. The actual Sobel filter kernel on
the Hexagon CDSP takes only 2% of the overall execution time.
The remaining time is consumed by FastRPC, ION memory
allocations, and data transfers to/from ION memory. Hence,
there is ample opportunity for run time management of kernels
to optimize the data transfers and ION memory allocations by
making the kernels efficiently use the memory and I/O.

Fig. 6: Comparison of CPU, GPU, DSP, and DSP auto-vectorized
IAXPY.

B. Hexagon DSP Kernel Performance
To further analyze the performance characteristics of the

Hexagon DSP in the Snapdragon SoC, the authors also ported
the IAXPY (integer a× x+ y) kernel by using two different
implementation approaches: one with and one without auto-
vectorization. Disassembling the two versions shows that
the auto-vectorized disassembly has almost 10× as many
instructions. However, Figure 6 shows that up to 2× as much
performance can be achieved by invoking the auto-vectorizer.
Although the results show that the CPU and GPU perform
these computations faster than the DSP, there is a savings in
power consumption that is not displayed in this graph. Although
there is not a direct way to measure power consumption of the
Hexagon DSP, the authors plan to estimate power consumption
by architecting a performance model in future work.

C. IRIS Performance Portability on Snapdragon

0.00

0.00

0.00

0.00

0.01

0.12

1.54

17.59

116.15

0.02 0.02 0.02 0.02
0.05

0.09

0.42

3.62

49.13

0.01 0.01
0.02 0.01 0.02 0.02

0.04

0.27

2.19

0.10 0.09 0.09 0.12
0.18

0.41

9.14

80.06

642.61

0.11 0.12 0.12
0.20 0.18

0.29

4.63

37.30

304.92

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

8 16 32 64 128 256 512 1024 2048

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Matrix Size (N x N)

CPU (Seq)
CPU (OpenMP)
GPU (OpenCL)
DSP (Hexagon - 1 Thread)
DSP (Hexagon - 4 Threads)

Fig. 7: SGEMM on Snapdragon.

To show the performance and portability of IRIS on Snap-
dragon, the authors evaluated Single Float Precision General
Matrix Multiply (SGEMM) on the Snapdragon SoC, as shown
in Figure 7. The SGEMM application contains host code
written in the IRIS C API and three different kernels, including
an OpenMP kernel for CPU, OpenCL kernel for GPU, and
Hexagon kernel for DSP. For the Hexagon kernel, the number
of running threads were varied from 1 to 4. The sizes of the
matrices in the application were varied from 8 × 8 to 2,048
× 2,048 in powers of two. For the baseline performance, a
sequential version of SGEMM running on a single CPU core
only was also evaluated. As the size of the matrices increases,
GPU shows the best performance, and DSP show the worst
performance. This is because SGEMM is a compute-intensive
kernel and good for data parallel-friendly devices (e.g., GPUs).
On the other hand, DSP shows the worst performance because
of its heavily pipelined hardware design and a small number
of concurrent hardware threads.

V. Conclusion
Contemporary heterogeneous systems provide mechanisms

to manage different types of accelerators in heterogeneous
architectures. However, achieving functional and performance
portability in heterogeneous programming is a challenging
problem. This paper presents Cosmic Castle, a software
ecosystem for performance portable programming on the
heterogeneous DSSoCs. Cosmic Castle is an on-going project,
and this paper provides a preliminary evaluation of the
Cosmic Castle programming toolchain, which comprises the
smart compiler OpenARC and the intelligent runtime system
IRIS, by porting and evaluating various benchmarks on the
Snapdragon SoC as an example heterogeneous DSSoC. The
results show that Cosmic Castle allows users to program
DSSoCs by using directive-based high-level programming
models while exploiting and intermixing different device-
specific programming models preferred by each heterogeneous
device. However, the initial performance comparison against
manual low-level implementations and other traditional HPC
devices shows the need for exploring further optimization
opportunities to achieve better performance portability.

Acknowledgments
This research used resources of the Experimental Computing

Laboratory (ExCL) at Oak Ridge National Laboratory, which
is supported by the US Department of Energy (DOE) Office
of Science under contract no. DE-AC05-00OR22725.

This research was supported by the following sources: (1)
the Defense Advanced Research Projects Agency Microsystems
Technology Office Domain-Specific System-on-Chip Program
and (2) DOE Office of Science, Office of Advanced Scientific
Computing Research, Scientific Discovery through Advanced
Computing program.

References

[1] OpenACC, “OpenACC: Directives for accelerators,” 2015.
[2] OpenMP, “OpenMP reference,” 1999.
[3] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing

locality and independence with logical regions,” International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC, 2012.

[4] Kokkos, “The C++ Performance Portability Programming Model,”
[Online]. Available: https://github.com/kokkos/kokkos, 2014.

[5] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming
standard for heterogeneous computing systems,” Computing in Science
and Engineering, vol. 12, no. 3, pp. 66–73, 2010.

[6] A. Sabne, P. Sakdhnagool, S. Lee, and J. S. Vetter, “Understanding porta-
bility of a high-level programming model on contemporary heterogeneous
architectures,” Micro, IEEE, vol. 35, no. 4, pp. 48–58, 2015.

[7] S. Lee and J. S. Vetter, “Early evaluation of directive-based GPU
programming models for productive exascale computing,” in SC12:
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage, and Analysis. Salt Lake City, Utah, USA: IEEE
press, 2012.

[8] S. Ramos and T. Hoefler, “Capability models for manycore memory
systems: A case-study with xeon phi KNL,” in Parallel and Distributed
Processing Symposium (IPDPS), 2017 IEEE International. IEEE, 2017,
pp. 297–306.

[9] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford,
V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous computing
(SHOC) benchmark suite,” in ACM Workshop on General-Purpose
Computation on Graphics Processing Units (GPGPU). Pittsburgh,
Pennsylvania: ACM, 2010, pp. 63–74.

[10] S. Lee and J. S. Vetter, “OpenARC: Open accelerator research compiler
for directive-based, efficient heterogeneous computing,” in ACM Sympo-
sium on High-Performance Parallel and Distributed Computing (HPDC).
Vancouver: ACM, 2014.

[11] S. Lee, J. Kim, and J. S. Vetter, “OpenACC to FPGA: A framework for
directive-based high-performance reconfigurable computing,” in IEEE
International Parallel & Distributed Processing Symposium (IPDPS).
Chicago: IEEE, 2016.

[12] S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU: a compiler
framework for automatic translation and optimization,” in 14th ACM
SIGPLAN symposium on Principles and practice of parallel programming.
Raleigh, NC, USA: ACM, 2009.

[13] S. Lee and R. Eigenmann, “OpenMPC: Extended openMP programming
and tuning for GPUs,” in 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE
Computer Society, 2010, pp. 1–11.

[14] M. Martineau, J. Price, S. McIntosh-Smith, and W. Gaudin,
Pragmatic Performance Portability with OpenMP 4.x. Cham: Springer
International Publishing, October 2016, pp. 253–267. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-45550-1_18

[15] cuBLAS, “Dense Linear Algebra on GPUs,” [Online]. Available: https:
//developer.nvidia.com/cublas, 2012.

[16] Thrust, “A Parallel Algorithm Library,” [Online]. Available: https://
developer.nvidia.com/thrust, 2012.

[17] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka, “Physis:
An implicitly parallel programming model for stencil computations
on large-scale gpu-accelerated supercomputers,” in Proceedings of
2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’11. New York,
NY, USA: ACM, 2011, pp. 11:1–11:12. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063398

[18] C. LengauerSven, A. Bolten, A. Größlinger, F. Hannig, H. Köstler,
U. Rüde, J. Teich, A. Grebhahn, S. Kronawitter, S. Kuckuk, H. Rittich,
and C. Schmitt, “Exastencils: Advanced stencil-code engineering,” in
Euro-Par 2014: Parallel Processing Workshops, 2014, pp. 553–564.

[19] R. Membarth, O. Reiche, F. Hannig, J. Teich, M. Korner, and W. Eckert,
“Hipacc: A domain-specific language and compiler for image processing,”
IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 1, pp. 210–224, Jan.
2016. [Online]. Available: http://dx.doi.org/10.1109/TPDS.2015.2394802

[20] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell,
A. Vasilyev, M. Horowitz, and P. Hanrahan, “Darkroom: Compiling
high-level image processing code into hardware pipelines,” ACM Trans.
Graph., vol. 33, no. 4, pp. 144:1–144:11, Jul. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2601097.2601174

[21] J. Hegarty, R. Daly, Z. DeVito, J. Ragan-Kelley, M. Horowitz, and
P. Hanrahan, “Rigel: Flexible multi-rate image processing hardware,”
ACM Trans. Graph., vol. 35, no. 4, pp. 85:1–85:11, Jul. 2016. [Online].
Available: http://doi.acm.org/10.1145/2897824.2925892

[22] J. Kim, S. Lee, B. Johnston, and J. S. Vetter, “IRIS: A portable runtime
system exploiting multiple heterogeneous programming systems,” in
IEEE High Performance Extreme Computing (HPEC), 2021.

[23] Intel, “Intel Intrinsics Guide,” [Online]. Available: https://software.intel.
com/sites/landingpage/IntrinsicsGuide/.

[24] ARM, “ARM Developer: Neon Intrinsics Reference,” [Online]. Avail-
able: https://developer.arm.com/architectures/instruction-sets/simd-isas/
neon/intrinsics.

[25] J. S. Vetter, R. Brightwell, M. Gokhale, P. McCormick, R. Ross, J. Shalf,
K. Antypas, D. Donofrio, A. Dubey, T. Humble, C. Schuman, B. V. Essen,
S. Yoo, A. Aiken, D. Bernholdt, S. Byna, K. Cameron, F. Cappello,
B. Chapman, A. Chien, M. Hall, R. Hartman-Baker, Z. Lan, M. Lang,
J. Leidel, S. Li, R. Lucas, J. Mellor-Crummey, J. P. Peltz, T. Peterka,
M. Strout, and J. Wilke, “Extreme heterogeneity 2018: DOE ASCR basic
research needs workshop on extreme heterogeneity,” 2018.

[26] J. E. Denny, S. Lee, and J. S. Vetter, “NVL-C: Static analysis techniques
for efficient, correct programming of non-volatile main memory systems,”
in Proceedings of the 25th ACM International Symposium on High-
Performance Parallel and Distributed Computing. Kyoto, Japan: ACM,
2016, pp. 125–136.

[27] S. Lee and J. S. Vetter, “OpenARC: extensible openACC compiler
framework for directive-based accelerator programming study,” in
Proceedings of the First Workshop on Accelerator Programming using
Directives (with SC14). New Orleans: IEEE Press, 2014, pp. 1–11.

[28] J. Lambert, S. Lee, J. Vetter, and A. Malony, “CCAMP: An Integrated
Translation and Optimization Framework for OpenACC and OpenMP,” in
2020 SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). Los Alamitos, CA, USA:
IEEE Computer Society, nov 2020, pp. 1387–1400. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SC41405.2020.00102

[29] J. Lambert, S. Lee, J. Kim, J. S. Vetter, and A. D. Malony, “Directive-
based, high-level programming and optimizations for high-performance
computing with FPGAs,” in ACM International Conference on Super-
computing (ICS). Beijing: ACM, 2018.

https://github.com/kokkos/kokkos
http://dx.doi.org/10.1007/978-3-319-45550-1_18
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://developer.nvidia.com/thrust
https://developer.nvidia.com/thrust
http://doi.acm.org/10.1145/2063384.2063398
http://dx.doi.org/10.1109/TPDS.2015.2394802
http://doi.acm.org/10.1145/2601097.2601174
http://doi.acm.org/10.1145/2897824.2925892
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics
https://doi.ieeecomputersociety.org/10.1109/SC41405.2020.00102

	I Introduction
	II Qualcomm Snapdragon Architecture and Programming
	II-A Architecture and Programming
	II-A1 big.LITTLE ARM CPUs
	II-A2 Adreno GPU
	II-A3 Hexagon DSP, NPU, and Spectra ISP

	II-B Designing and Optimizing Applications for Hexagon DSP
	II-B1 Creating a Hexagon DSP Application

	III Cosmic Castle Framework
	III-A IRIS : Intelligent Run Time System
	III-B IRIS on Snapdragon
	III-C OpenARC as a Front-End IRIS Compiler
	III-D OpenARC-IRIS Integration

	IV Evaluation
	IV-A Performance Comparison of Heterogeneous Compute Units in Snapdragon SoC
	IV-B Hexagon DSP Kernel Performance
	IV-C IRIS Performance Portability on Snapdragon

	V Conclusion
	References

