
IRIS: A Portable Runtime System Exploiting
Multiple Heterogeneous Programming Systems

Jungwon Kim, Seyong Lee, Beau Johnston, and Jeffrey S. Vetter
Oak Ridge National Laboratory

Oak Ridge, TN, USA
{kimj, lees2, johnstonbe, vetter}@ornl.gov

Abstract—Across embedded, mobile, enterprise, and high
performance computing systems, computer architectures are
becoming more heterogeneous and complex. This complexity
is causing a crisis in programming systems and performance
portability. Several programming systems are working to address
these challenges, but the increasing architectural diversity is
forcing software stacks and applications to be specialized for each
architecture. As we show, all of these approaches critically depend
on their runtime system for discovery, execution, scheduling, and
data orchestration. To address this challenge, we believe that a
more agile and proactive runtime system is essential to increase
performance portability and improve user productivity. To this
end, we have designed and implemented IRIS: a portable runtime
system exploiting multiple heterogeneous programming systems.
IRIS can discover available resources, manage multiple diverse
programming systems (e.g., CUDA, Hexagon, HIP, Level Zero,
OpenCL, OpenMP) simultaneously in the same execution, respect
data dependencies, orchestrate data movement proactively, and
provide for user-configurable scheduling. Our evaluation on three
architectures, ranging from Qualcomm Snapdragon to a Sum-
mit supercomputer node, shows that IRIS improves portability
across a wide range of diverse heterogeneous architectures with
negligible overhead.

Index Terms—heterogeneous architectures, runtime systems,
compilers

I. INTRODUCTION

Experts expect the trend toward heterogeneous computing
architectures and domain-specific computing to continue into
the foreseeable future [1]–[3]. Years ago, this trend materi-
alized in the mobile and embedded market, and it is now
entering the enterprise, machine learning, high performance
computing (HPC), and cloud computing markets. Contempo-
rary architectures, such as NVIDIA Xavier, Qualcomm Snap-
dragon, and Xilinx Zynq, offer glimpses of future architectures
in which several processors are systems-on-a-chip (SOCs)
that contain multiple devices for accelerating applications,
including a CPU, GPU, AI accelerator, and a vision or camera
unit, among others. In HPC, 7 of the top 10 systems on the

Notice: This manuscript has been authored by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the US Department of Energy (DOE).
The US government retains and the publisher, by accepting the article
for publication, acknowledges that the US government retains a nonex-
clusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for US
government purposes. DOE will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

TOP500 list are heterogeneous, and this trend is expected to
continue into the foreseeable future.

A fundamental challenge for this architectural diversity
is that few, if any, programming systems span contempo-
rary architectures while also providing a reasonable level
of performance portability [4]. A plethora of programming
models and system, such as CUDA [5], HIP [6], oneAPI [7],
OpenCL [8], OpenACC [9], OpenMP [10], SYCL [11], and
others, do exist, but their implementation and performance
portability is inconsistently realized across architectures and
implementations. Yet, a common feature in most of these
heterogeneous programming models is that they must rely on
a runtime system (RTS) for discovering available resources,
managing multiple devices (e.g., CPU and GPU), resolving
data dependencies, orchestrating data movement either explic-
itly or implicitly, and generating efficient work schedules on
the available resources.

We expect that, as the community moves toward increas-
ingly diverse heterogeneous systems [3], it is more likely that
the RTS must bear more of the responsibility of application
execution. Because many of the constraints and dependencies
will not be known until execution time (e.g., size of a matrix,
location of data in devices, resource availability), the RTS
will be keenly positioned to dynamically balance these goals
at execution time. Moreover, the scheduling challenge for
heterogeneous architectures is considerably more difficult than
for homogeneous architectures. To strive for performance
portability, the heterogeneous RTS must map individual appli-
cation kernels to heterogeneous devices efficiently, balancing
concerns of several competing criteria: performance, data
movement costs, and current load balance, among others.
Moreover, these specialized cores often have idiosyncratic
data movement semantics. Practically, the penalty for a poor
decision when scheduling on a heterogeneous architecture can
be a significant slowdown by an order of magnitude, which is
much higher than a poor scheduling decision on homogeneous,
shared-memory nodes.

Simply put, we propose new capabilities for heterogeneous
RTSs to support performance portability, including dynamic
resource discovery, online adaptive scheduling, proactive data
movement, and support for simultaneous execution of multiple
native programming models.



A. Contributions
To address these challenges, we have designed, imple-

mented, and evaluated IRIS, a new heterogeneous RTS. In
this paper, we contribute the following.
(1) We survey existing programming systems and identify the

major challenges for performance portability of RTSs for
diverse heterogeneous architectures.

(2) We describe IRIS, which provides several new key capa-
bilities on heterogeneous architectures ranging from the
SoCs to supercomputers, as outlined in Section II.

(3) We empirically evaluate IRIS on three different systems
equipped with heterogeneous hardware (Qualcomm Snap-
dragon SoC, AMD CPU with AMD GPU, and POWER9
CPU with NVIDIA GPU), using microbenchmarks, ker-
nels, and a proxy application to demonstrate IRIS’s
portability, productivity, and performance.

II. MOTIVATION

Many RTSs have been created over years, and much of the
related work focuses on functional portability and performance
efficiency on CPU and possibly GPU architectures; however,
in our review, these existing RTSs lack one or more of the
critical capabilities for supporting portable yet diverse het-
erogeneous architectures. This section highlights these critical
capabilities.
• Dynamic Discovery and Portability: Heterogeneous

functionality will vary considerably across processors, and
thus the RTS must dynamically catalog and manage these
devices. At initialization, the RTS must discover and enumer-
ate the heterogeneous capabilities on a node, including their
preferred programming model and data transfer protocols. This
makes the application portable across diverse heterogeneous
architectures.
• Online Adaptive Scheduling with Introspection: Indi-

vidual application kernels will perform differently across het-
erogeneous cores, so the RTS will need to adaptively schedule
the mapping of these kernels to specific heterogeneous cores
using a policy. The application developers need to select the
specific policy or write their own custom policies for their
target applications and systems.
• Orchestrate Data Movement Proactively: Data move-

ment across heterogeneous system memory can dominate per-
formance, so the RTS must initiate, monitor, and optimize data
movement across memory. Ideally, the RTS could manage data
movement without explicit user intervention or application
commands.
• Support Simultaneous Execution of Multiple Pro-

gramming Models: Existing programming models are frag-
mented across architectures, and, in most cases, specific pro-
gramming models are more mature and optimized for their
respective architectures. As processors become heterogeneous,
so will the best programming models for each device on the
processor. In this case, the RTS must blend these different
programming models as seamlessly as possible.
• Provide for Online Code Generation (Just-in-Time

Compilation): Given the diversity of the heterogeneous cores

CUDA
Runtime 
Shared
Library

HIP
Runtime 
Shared
Library

OpenMP
Kernel 
Shared
Library Vendor

OpenCL
Vendor
OpenCL

CPU
NVIDIA

GPU
AMD
GPU

Intel
FPGA

Qualcomm
GPU

Task

Task

Task

Task

Task

Task

Task

Task

OpenCL ICD Loader

OpenCL
Kernel

HIP
Kernel

OpenMP
Kernel

CUDA
Kernel

OpenCL
Kernel

Shared Virtual Device Memory
DDR4 HBM2 HBM2 HBM2 LPDDR4

CPU

DDR4

Dynamic
Platform
Loader

Task
Scheduler

Task

Host

IR
IS

OpenACC Compiler

OpenACC Application

IRIS Host Code
(C/C++/Fortran/

Python)Lo
w

 
Le

ve
l

H
ig

h 
Le

ve
l

Po
lic
y

Po
lic
y

Po
lic
y

Po
lic
y

Qualcomm
DSP

LPDDR4

Hexagon
Runtime 
Shared
Library

Task

Hexagon
Kernel

Level Zero
Runtime 
Shared
Library

Intel
GPU

Task

SPIR-V
Kernel

HBM2

Compute Devices

OpenMP Compiler

OpenMP Application

Other Compilers

Others (SYCL, Chapel, …)

Fig. 1: The IRIS architecture.

available, the RTS may need to compile and optimize kernels
for execution on the target heterogeneous cores. Furthermore,
this capability can facilitate autotuning and optimization owing
to the additional knowledge gained at execution time.

The survey of existing work (Section V) shows that no
single system captures all of these concerns for contemporary
heterogeneous architectures, though several RTSs provide a
subset of these capabilities. IRIS is, to the authors’ best knowl-
edge, the first RTS to provide these capabilities across a wide
range of diverse, contemporary heterogeneous architectures.

III. IRIS OVERVIEW

IRIS is a new prototype RTS designed to incorporate the
capabilities outlined in Section II. This section describes
the core abstractions and prototype implementation of IRIS.
Fig. 1 shows IRIS’s major abstractions and implementation
components.

A. IRIS Abstractions

IRIS presents a set of abstractions to the user: platform
model, memory model, programming model, and execution
model. These abstractions define their functionalities.

1) Platform Model: IRIS’s platform model consists of a
host connected to one or more compute devices. The host and
all compute devices reside in a single-node system. The host
node can be a multisocket, multicore CPU configuration. A
compute device can be a GPU, Xeon Phi, field-programmable
gate array (FPGA), DSP, or even a CPU. A compute device,
except for the CPU, communicates with the host and other
compute devices via a peripheral interconnect, such as PCI Ex-
press or NVLink.

2) Memory Model: IRIS’s memory model describes the
contents and behavior of the memory exposed by the IRIS
platform. The memory in IRIS is divided into two parts: host
memory and device memory. The host memory is directly
available to the host. The device memory is directly available
to kernels executing on its attached compute device. The
physical device memory can be completely separate from the
host memory for discrete compute devices (e.g., NVIDIA and
AMD GPUs, Intel Xeon Phi KNCs, and FPGAs). On the other



hand, for integrated compute devices (e.g., CPUs, Intel Xeon
Phi KNLs), the device and the host share the same physical
memory and virtual address space.

To enable flexible task scheduling across multiple compute
devices and make programming easier, the IRIS memory
model presents the shared virtual device memory for all
compute device memories with a relaxed memory consistency
model, as shown in Fig. 1. All compute devices can share
memory objects in the shared virtual device memory, and they
can see the same content in the memory objects using the IRIS
synchronization primitives.

3) Programming Model: The IRIS programming model is
defined in terms of two distinct units: a host code that executes
on the host and kernels that execute on compute devices. The
IRIS RTS is a user-level library linked into the host code. To
submit kernels to compute devices, the host code creates tasks.
A task contains zero or more commands. There are three types
of commands: (1) host-to-device memory copy command, (2)
device-to-host memory copy command, and (3) kernel launch
command. A task can have a hierarchical structure; that is, a
task can contain multiple child tasks called subtasks. All last-
level commands in a task hierarchy are executed in a single
compute device in a first in, first out execution order. A task
can have a dependency on other tasks. When a task depends on
other tasks, it cannot start until the prerequisite tasks complete.

The host code must be portable across diverse programming
systems. Thus, IRIS introduces a unified application program-
ming interface (API) that abstracts away the differences of
programming models from diverse programming systems and
offers the C, C++, Fortran, and Python APIs. Kernels usually
contain the most compute-intensive and time-consuming parts
of an application, and the overall performance of the appli-
cation depends on the kernels. Therefore, the kernels must be
written and optimized for the target compute device. The IRIS
RTS runs the target-specific kernels for the target compute
device.

Writing multiple kernels for the same code on multiple
programming systems hurts application portability and pro-
grammer productivity. Writing a single, low-level kernel across
multiple programming systems is also not a good strategy
because it exposes the low-level details of underlying hardware
architecture to the programmer, which results in poor perfor-
mance portability. To address this issue, IRIS provides a com-
piler that translates a source code written in a high-level and
target-independent programming language to multiple, target-
optimized kernels. Our prototype uses OpenACC or OpenMP
with device offload as an input high-level programming model.

4) Execution Model: Fig. 2 shows an overview of the IRIS
execution model. The application host code submits a task
to the application task queue. This task submission includes
information about the task, such as a hint, a target device pa-
rameter, the synchronization mode (blocking or non-blocking),
and a policy selector that indicates on which resource the task
should be executed. The application task queue is an out-
of-order queue scheduled by the IRIS task scheduler. The
task scheduler honors the dependencies among tasks, and

Application
Task Queue

Task
Scheduler

Dev
1Worker Thread ︙

Dev 
2Worker Thread ︙

Device
Command Queue

Ready Queue

Application

Scheduling Policies

De
vi
ce

Ty
pe

Ra
nd

Gr
ee
dy

Ro
un
d

Ro
bi
n

Pr
of
ile

Ba
se
d

Lo
ca
lit
y

Aw
ar
e

Us
er

Cu
st
om

Fig. 2: The IRIS execution model.

synchronization is enforced by the host code.
When the task scheduler finds an executable task, in which

all prerequisite tasks are complete, it dequeues the task from
the application task queue and selects the target compute
device using the device selection hint provided by the applica-
tion. Once this selection is made, the task scheduler enqueues
the task into the ready queue attached to the target compute
device. A ready queue is an in-order queue managed by a
worker thread. Each compute device has a worker thread.
A worker thread dequeues a task from its attached ready
queue and submits all commands in the task to the device
command queues on its attached compute device. A device
can have one or more device command queues (e.g., CUDA
stream, HIP stream, OpenCL command queue) to enable
simultaneous execution of multiple kernels. When the compute
device completes the task, the worker thread notifies the
task scheduler that the task is complete. At this point, the
task scheduler resolves the dependencies among the tasks in
the application task queue and searches for newly available
executable tasks. To reduce CPU load, the runtime puts the
task scheduler and work threads in a sleep mode while the
devices are computing and no work is required by the task
scheduler or work threads. The task scheduler wakes up only
for two conditions: (1) when the host code submits a task or
(2) when a worker thread notifies it of a task completion. A
worker thread wakes up only when the scheduler enqueues a
task into its attached ready queue.

B. IRIS Compiler and Code Generation

Kernels executed by IRIS can be hand written, compiler
generated, or translated from a domain-specific language,
among other methods. The IRIS compiler is a source-to-
source translator built on top of OpenARC [12]. The com-
piler translates the compute-intensive codes augmented by the
OpenMP/OpenACC directive in the input source codes into
device kernel codes written in CUDA, Hexagon, HIP, OpenCL,
OpenMP, and the IRIS polyhedral model. It also generates the
host code using the IRIS runtime API, which orchestrates the
execution of the kernels on devices from the input source code.
This paper mainly focuses on the RTS, and the details of the
code generation are beyond the scope of this writing.

C. Shared Virtual Device Memory

To achieve easy programming and flexible task scheduling
with effective data orchestration, IRIS provides programmers
with weakly consistent, shared virtual memory across multiple,
disjoint device memories. In the IRIS execution and memory
models, different compute device can access the same memory
objects. If the compute devices only read a memory object,



they can have their own local copy of the memory object in
their device memories. Otherwise, if at least one device writes
the memory object, the updated contents in the memory object
must be shared with other compute devices at synchronization
points (e.g., task dependency edges; task, graph, device, and
platform synchronization function calls).

To manage memory consistency across multiple devices,
IRIS maintains an owner list for each memory object. Each
entry in the list contains a linear memory region and its owner
device, which has the latest local copy of the memory region
on its device memory. When a worker thread executes a host-
to-device memory copy command, it removes all entries of the
target memory object from the owner list, and it adds a new
entry with the memory region and relevant attached device
to the list. When the worker thread executes a kernel launch
command, it checks whether its attached device has the latest
copy of the accessed memory objects in the kernel. That is, it
references the owner lists in the memory object. If the attached
device does not have the latest copy of the memory, it copies
the accessed memory region from one of the owners to the
attached device. If the memory region in the kernel is read
only, the worker thread adds a new entry in the owner list.
Otherwise, the region is written in the kernel, and the worker
thread clears the list and adds a new entry. When the worker
thread executes a device-to-host memory copy command, it
copies the latest version of its device memory to the host. If
the device does not have the latest copy, the worker thread
copies the device memory from an owner in the same manner
it would for the kernel launch commands.

D. Configurable Device Selection Policies

The host code submits a kernel to a compute device by
submitting a task that contains the kernel launch command to
the application task queue in the IRIS RTS. In the OpenMP
specification, a device clause in a target directive specifies the
non-negative device number of the target device that executes
the task. IRIS extends the device clause to the device selection
policy. IRIS presents seven built-in device selection policies:
(1) device number, (2) device type, (3) random, (4) greedy,
(5) round robin, (6) profile-based, and (7) locality-aware, as
shown in Fig. 2. Users can also create their own custom
policies and plug them into IRIS.

E. Dynamic Platform Loader

The dynamic platform loader is the core mechanism that
enables diverse programming systems from different vendor
devices to coexist on a single programming environment.
When an IRIS application calls the IRIS initialization function,
the platform loader loads all available shared runtime libraries
in the underlying system and places them on the private IRIS
linkchains. The platform loader surveys all available compute
devices, loads their native kernels, and prepares them to run
the IRIS tasks by calling the native runtime API functions
from the shared libraries in the linkchains. An IRIS applica-
tion executable is linked with the IRIS library only. It does
not have any direct dependencies with the underlying native

TABLE I: Evaluation systems.
System Snapdragon 855 AMD Summit
CPUs Qualcomm Kryo 485 2 × AMD EPYC 7702 2 × IBM Power9
Cores/CPU 8 64 22
Host Mem 6 GB LPDDR4 (shared) 512 GB DDR4 512 GB DDR4
Devices Qualcomm Adreno 640 GPU 2 × AMD MI60 GPU 6 × NVIDIA V100 GPU

Qualcomm Hexagon 690 DSP
Device Mems 6 GB LPDDR4 (shared) 2 × 32 GB HBM2 6 × 16 GB HBM2
Runtime(s) Qualcomm OpenCL 2.0 AMD HIP 4.1 NVIDIA CUDA 10.1

Qualcomm Hexagon SDK 3.5.2
Compiler Android NDK r20 GCC 9.1 IBM XL C/C++ 16.1
OS Android 9 CentOS 7.8 RHEL 7.6

programming systems. This makes the application portable
across diverse, heterogeneous architectures at the source code
and executable levels.

F. Task Partitioning

In IRIS, multiple compute devices can cooperate to execute
a task using the task partitioning mechanism. To achieve this,
a programmer can manually partition a task containing a large
index space into multiple subtasks and offload them to multiple
compute devices using their memory access information. The
task partitioning can also be done automatically with the
IRIS runtime and polyhedral compiler. If the kernel access
memory objects in affine forms, the runtime partitions the loop
index using the memory access regions information from the
polyhedral kernel code.

IV. EVALUATION

As described in Section II, we designed IRIS to provide
several new capabilities to achieve a new level of portability
across a diverse range of heterogeneous architectures. Our
evaluation focuses first on the basic properties of the RTS,
and then on two kernels and a proxy application using three
heterogeneous systems. Table I summarizes the systems tar-
geted for evaluation.

A. Microbenchmarks

We measured the kernel launch overhead of IRIS on three
evaluation systems (Fig. 3). First, for a baseline, we ran
empty kernels and measured the kernel launch overhead using
the underlying native programming platforms without IRIS
(i.e., OpenCL for GPU and Hexagon for DSP in Snapdragon,
HIP for AMD, and CUDA for Summit). Then we measured
the kernel launch overhead with IRIS. As shown in Fig. 3,
IRIS introduces additional runtime overhead as a trade-off for
portability and flexible scheduling. The overhead includes task
creation, command creation, task scheduling, communication
and synchronization across the host code, task scheduler,
and worker threads. For both cases (with and without IRIS),
the average overhead per kernel launch decreased as the
kernel launch count increased, except for native Hexagon on

 0

 100

 200

 300

 400

 500

 600

1 10 100 1000O
v
e
rh

e
a
d
 p

e
r 

k
e
rn

e
l 
la

u
n
c
h
 (

u
s
)

Kernel launch count

(a1) Snapdragon (OpenCL)

 0

 100

 200

 300

 400

 500

 600

 700

1 10 100 1000

Kernel launch count

(a2) Snapdragon (Hexagon)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 10 100 1000

Kernel launch count

(b) AMD (HIP)

 0

 5

 10

 15

 20

 25

1 10 100 1000

Kernel launch count

Native w/o IRIS IRIS

(c) Summit (CUDA)

Fig. 3: Kernel launch overhead.



 0

 0.5

 1

 1.5

 2

 2.5

CPU GPU DSP C+G+D

S
p
e
e
d
u
p

(a) Snapdragon

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

CPU GPU 2GPU CPU+2GPU

(b) AMD

 0

 1

 2

 3

 4

 5

CPU GPU 2GPU 6GPU CPU+6GPU

(c) Summit

Fig. 4: SAXPY.

 0

 5

 10

 15

 20

 25

CPU GPU DSP C+G+D

S
p
e
e
d
u
p

(a) Snapdragon

 0

 5

 10

 15

 20

 25

CPU GPU 2GPU CPU+2GPU

(b) AMD

 0

 10

 20

 30

 40

 50

CPU GPU 2GPU 6GPU CPU+6GPU

(c) Summit

Fig. 5: SGEMM.

Snapdragon (Fig. 3[a2]). This is because the kernel launches
in OpenCL, HIP, CUDA, and IRIS are asynchronous with the
application, but kernel launch in Hexagon is a synchronous
operation. As shown in Fig. 3, the additional runtime overhead
from IRIS is negligible.

B. Kernels

We used two kernels for the evaluation, SAXPY and
SGEMM. SAXPY is a memory-intensive kernel with few
computations performed per memory operation. On the other
hand, SGEMM is a compute-intensive kernel. Because the
Qualcomm OpenCL for Adreno GPU does not support double-
precision OpenCL kernels, we used only single-precision
operations to show the performance variation of the same
kernels across different architectures.

Fig. 4 shows the speedup over a CPU (i.e., all CPU cores
in a system) of SAXPY on three different evaluation systems.
The array size was set to 64 M for Snapdragon and 256 M for
AMD GPUs and Summit (NVIDIA) GPUs. We ran OpenMP
SAXPY kernels on all CPU devices in these systems. OpenCL
and Hexagon kernels were used for the Snapdragon GPU and
DSP, the HIP kernel was used for the AMD GPUs, and the
CUDA kernel was used for the Summit GPUs.

For Snapdragon, the GPU achieved a 1.4× speedup, and the
DSP achieved a 0.5× speedup over the CPU-only implemen-
tation (Fig. 4[a]). All CPUs, GPUs, and DSPs share the same
physical device memory on Snapdragon. Therefore, memory
copy overheads are the same. The performance differences
come from the kernel execution time. We also ran SAXPY
using CPUs, GPUs, and DSPs simultaneously. We distributed
the workload among them based on their throughputs using a
task partitioning technique (Section III-F), and it achieves a
nearly 2.5× speedup.

The AMD GPUs achieved a 0.96× speedup over the CPU-
only implementation. Unlike Snapdragon, CPUs and GPUs in
the AMD machine have their own discrete device memories.
Therefore, the memory copy overhead in CPU-GPU is higher
than CPU-CPU. Furthermore, the OpenMP CPU kernel in
SAXPY can exploit a total of 128 CPU cores in the machine.
This high memory copy overhead on the GPU, coupled with
the good kernel execution performance on the CPU, resulted in
poor performance on the GPU compared to the CPU. We also
ran SAXPY using 2 GPUs and all devices (CPU + 2 GPUs).
They achieved a speedup of 1.1× to 1.4× over the CPU.

 0

 0.2

 0.4

 0.6

 0.8

 1

OpenCL IRIS

S
p
e
e
d
u
p

(a) Snapdragon

 0

 0.2

 0.4

 0.6

 0.8

 1

HIP IRIS

(b) AMD

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

CUDA IRIS

(c) Summit

Fig. 6: LULESH.

As shown in Fig. 4(c), the GPUs achieved a 2× speedup
over the CPU kernel on Summit. Summit’s NVLink2 intercon-
nect improves CPU-GPU communication time, which results
in high performance for the GPU implementation. We vary
the number of GPU devices up to 6, and it shows good
scalability—up to a 4.5× speedup. When SAXPY uses all
devices in the system, it achieves a 5× speedup.

Fig. 5 shows the speedup over a CPU device using the
SGEMM kernel on three different evaluation systems. We
used 2048× 2048 matrices for Snapdragon and 6144× 6144
matrices for AMD and Summit. Unlike SAXPY, SGEMM
is a very compute-intensive kernel, and the kernel execution
time dominates its total execution time. For all three systems,
GPUs show much higher performance than the CPU because
of the massively parallel kernel execution on the GPU and
high strided memory access overhead in the CPU and DSP. On
Snapdragon and Summit, SGEMM shows performance degra-
dation when using all devices, owing to its additional synchro-
nization overhead. However, the single CPU + 2 GPUs AMD
configuration shows performance improvements compared to
only 2 GPUs, owing to the relatively high performance of the
AMD CPU.

C. Proxy Application

Our final evaluation used a proxy application called Liver-
more Unstructured Lagrangian Explicit Shock Hydrodynam-
ics (LULESH) [13]; this code is far more complex than
any individual kernel and implements a simplified version
of an unstructured Lagrangian explicit shock hydrodynamics
application. LULESH is a significant proxy application com-
posed of 8,000 lines of code with straightforward problem
size scaling and architecture scalability. We automatically
generated the IRIS version of LULESH from the OpenACC
version using the IRIS compiler (see high-level programming
in Fig. 1). Our implementation of LULESH spawns 1.6 million
kernel tasks with a problem size of 1003 per domain, which
is a large number of tasks for any task-based system. For
comparison, we also created native GPU versions for each
platform (e.g., OpenCL for Snapdragon, HIP for AMD, and
CUDA for Summit), which uses the device-specific backend
runtime directly instead of using IRIS but has nearly identical
execution patterns as the IRIS version.

Fig. 6 shows the performance of LULESH’s IRIS version
running on multiple platforms without any change to the
source code; its performance is normalized to the native
GPU versions of each tested platform. The results indicate
that IRIS incurs acceptable overhead on all tested systems



when compared to the native GPU versions. Interestingly, the
performance of IRIS is slightly better than the native CUDA
version on Summit GPUs, which is due to the task merging
optimization implemented in the IRIS compiler and runtime.
The task merging optimization merges multiple kernel launch
calls and memory transfer calls into a single task. This
reduces the number of IRIS task submissions and reduces
the runtime task launch and scheduling overhead. The task
merging optimization is applied on all tested platforms, but
the results show that the benefit of the optimization outweighs
the IRIS runtime overhead on Summit only.

V. RELATED WORK

In Table II, we compare related work along twelve criteria:
(1) support for CPUs, (2) support for GPUs, (3) support
for FPGAs, (4) support for DSPs, (5) can manage multi-
ple devices simultaneously (Section III-A1), (6) can manage
multiple devices from multiple vendors simultaneously (Sec-
tion III-A1), (7) can manage multiple programming systems
on multiple devices simultaneously (Section III-A3), (8) can
manage shared device memory among multiple devices and
programming systems (Sections III-C and III-A2), (9) can per-
form workload partitioning (Section III-F), (10) can provide
tasking with dependencies (Section III-A3), (11) can facilitate
configurable scheduling policies (Section III-D), and (12) can
support execution of distributed memory nodes.

Because a comprehensive review of this material is not
possible due to space constraints, we highlight the research
that is most closely related to our work. Many successful
task-based RTSs had design goals (e.g., supporting distributed
memory) or implementation targets (e.g., only GPUs) that
were different from ours. For example, as shown in Table II,
most systems support a CPU and possibly a GPU—often only
NVIDIA GPUs—but few of them support FPGAs or various
components of SoCs. Even fewer of these RTSs support
simultaneous execution across multiple heterogeneous devices.
Most of these RTSs do not support simultaneous execution
of multiple programming systems on these heterogeneous
devices. A review of Table II shows that OmpSs [14] and
StarPU [15] are the two RTSs most closely related to IRIS.

Unlike IRIS, which provides a unified host code API,
with StarPU, a programmer must write different versions
of host code to launch the CUDA and/or OpenCL kernels
using CUDA and/or OpenCL runtime APIs. In OmpSs and
StarPU, the programmers must explicitly specify the available
programming systems (CUDA, OpenCL) in the target system
when their runtime libraries are built. On the other hand,
the IRIS RTS automatically finds the available programming
systems in the target system, dynamically loads their respec-
tive shared libraries, and indirectly calls their API functions.
Also, these other runtimes do not support automatic workload
partitioning.

VI. CONCLUSIONS

Nearly all contemporary programming models for heteroge-
neous systems depend on rich RTSs to manage execution and

TABLE II: Summary of related work. (CPU = {Intel, AMD, IBM,

ARM}; GPU = {NVIDIA, AMD, Intel, ARM, Qualcomm}; FPGA = {Intel, Xilinx,

o=other}; DSP = {Qualcomm})

Name C
PU

G
PU

FP
G

A

D
SP

M
ul

tip
le

D
ev

ic
es

M
ul

tip
le

Ve
nd

or
s

M
ul

tip
le

Pr
og

Sy
s

Sh
ar

ed
Pa

rt
iti

on
in

g
Ta

sk
in

g
Sc

he
du

lin
g

Po
lic

y
D

is
tr

ib
ut

ed

IRIS 3333 33333 33 3 3 3 3 3 3 3 3
OmpSs [14] 3333 33 33 33 3 3 3 3 3
StarPU [15] 3333 33 33 33 3 3 3 3 3 3
AMGE [16] 3 3 3 3
Argobots [17] 3333 3 3 3
COSP [18] 3 3 3 3
CUDA [5] 3 3 3
Charm++ [19] 3333 3 3 3 3 3
Cilk [20] 3333 3 3
Dandelion [21] 3 3 3 3 3 3 3 3
GeMTC [22] 3 3 3
HIP [6] 33 3
HPVM [23] 3333 33 33 3 3
HPX [24] 3 3 3 3 3
Legion [25] 3 3 3 3 3 3 3 3
MCL [26] 3333 33 33 33 3 3 3 3
Maestro [27] 33 3 3 3
MultiGPU [28] 3 3 3 3
OCR [29] 33 3 3 3
OpenACC [9] 3333 33 3
OpenCL [30] 3 33333 33 3 3 3 3
OpenMP [31] 3333 333 3 3
PALMOS [32] 3 33 33 33 3 3 3 3 3
PaRSEC [33] 33 3 3 3 3 3 3
PTask [34] 3 33 33 33 3 3 3 3 3
SnuCL [35] 33 3 33 33 33 3 3 3 3 3
SYCL [11] 3333 33333 33 3 3 3 3 3
STAPL-RTS [36] 333 3 3
TBB [37] 3333 3
TVM [38] 33 3 3 o 3 3 3
Uintah [39] 3333 3 3 3
VAST [40] 3 3 3 3
VirtCL [41] 3 3 3 3

orchestrate data movement. Moving forward into the era of
heterogeneity, we believe that RTSs must provide even more
capability to ensure some level of performance portability
across diverse architectures. To address these challenges, we
have designed, implemented, and evaluated a prototype system
named IRIS: a portable RTS for exploiting multiple hetero-
geneous programming systems. IRIS can discover available
functionality, manage multiple diverse programming systems
simultaneously in the same application, represent data de-
pendencies, proactively orchestrate data movement, and allow
configurable policies for scheduling work on multiple hetero-
geneous devices. IRIS also offers a shared device memory with
relaxed consistency among different heterogeneous devices,
thereby allowing dynamic management of data movement.
We evaluated IRIS on multiple architectures, ranging from
Qualcomm Snapdragon to the Summit supercomputer, to show
that IRIS provides performance portability across diverse ar-
chitectures and allows the application to effectively exploit all
available devices within a node. We believe IRIS’s capabilities
will be crucial in the era of heterogeneous architectures.



ACKNOWLEDGMENT

This research used resources of the Experimental Comput-
ing Laboratory and the Oak Ridge Leadership Computing Fa-
cility at Oak Ridge National Laboratory, which are supported
by the US Department of Energy’s Office of Science of under
contract no. DE-AC05-00OR22725.

This research was supported by (1) the Defense Advanced
Research Projects Agency’s Microsystems Technology Office,
Domain-Specific System-on-Chip Program and (2) the US De-
partment of Defense, Brisbane: Productive Programming Sys-
tems in the Era of Extremely Heterogeneous and Ephemeral
Computer Architectures.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Commun. ACM, vol. 62, no. 2, pp. 48–60, 2019.

[2] M. J. Schulte, M. Ignatowski, G. H. Loh, B. M. Beckmann, W. C.
Brantley, S. Gurumurthi, N. Jayasena, I. Paul, S. K. Reinhardt, and
G. Rodgers, “Achieving exascale capabilities through heterogeneous
computing,” Micro, IEEE, vol. 35, no. 4, pp. 26–36, 2015.

[3] J. S. Vetter, R. Brightwell, M. Gokhale, P. McCormick, R. Ross, J. Shalf,
K. Antypas, D. Donofrio, T. Humble, C. Schuman, B. V. Essen, S. Yoo,
A. Aiken, D. Bernholdt, S. Byna, K. Cameron, F. Cappello, B. Chapman,
A. Chien, M. Hall, R. Hartman-Baker, Z. Lan, M. Lang, J. Leidel,
S. Li, R. Lucas, J. Mellor-Crummey, P. P. Jr., T. Peterka, M. Strout,
and J. Wilke, “Extreme heterogeneity 2018 - productive computational
science in the era of extreme heterogeneity: Report for DOE ASCR
workshop on extreme heterogeneity,” USDOE Office of Science (SC)
(United States), Tech. Rep., 2018.

[4] S. J. Pennycook, J. D. Sewall, and V. W. Lee, “Implications of a metric
for performance portability,” Future Generation Computer Systems,
vol. 92, pp. 947–958, 2019.

[5] J. Nickolls and I. Buck, “NVIDIA CUDA software and GPU parallel
computing architecture,” in Microprocessor Forum, 2007.

[6] AMD, “HIP: C++ heterogeneous-compute interface for portability,”
2020.

[7] oneAPI Programming Model, https://www.oneapi.com/.
[8] K. Group, “OpenCL: The open standard for parallel programming of

heterogeneous systems,” 2019.
[9] OpenACC, “OpenACC: Directives for accelerators,” 2015.

[10] OpenMP Application Programming Interface. Version 5.0, https://www.
openmp.org/specifications/.

[11] K. Group, “SYCL: C++ single-source heterogeneous programming for
openCL,” 2019.

[12] S. Lee and J. S. Vetter, “Openarc: Open accelerator research compiler
for directive-based, efficient heterogeneous computing,” in Proceedings
of the 23rd International Symposium on High-performance Parallel and
Distributed Computing, ser. HPDC ’14, 2014, pp. 115–120.

[13] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,
R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz,
and C. Still, “Exploring traditional and emerging parallel programming
models using a proxy application,” in 27th IEEE International Parallel &
Distributed Processing Symposium (IEEE IPDPS 2013), Boston, USA,
May 2013.

[14] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguade,
and J. Labarta, “Productive programming of gpu clusters with ompss,”
in Proceedings of the 26th IEEE International Parallel and Distributed
Processing Symposium, ser. IPDPS ’12, 2012, pp. 557–568.

[15] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu: A
unified platform for task scheduling on heterogeneous multicore archi-
tectures,” in Proceedings of the 15th International Euro-Par Conference
on Parallel Processing, ser. Euro-Par’09, 2009, pp. 863–874.

[16] J. Cabezas, L. Vilanova, I. Gelado, T. B. Jablin, N. Navarro, and W.-
m. W. Hwu, “Automatic parallelization of kernels in shared-memory
multi-gpu nodes,” in Proceedings of the 29th ACM on International
Conference on Supercomputing, ser. ICS ’15, 2015, pp. 3–13.

[17] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks,
A. Castello, D. Genet, T. Herault, P. Jindal et al., “Argob-
ots: A lightweight threading/tasking framework,” Argonne National
Lab.(ANL), Argonne, IL (United States), Tech. Rep., 2016.

[18] A. Sabne, P. Sakdhnagool, and R. Eigenmann, “Scaling large-data
computations on multi-gpu accelerators,” in Proceedings of the 27th
International ACM Conference on International Conference on Super-
computing, ser. ICS ’13, 2013, pp. 443–454.

[19] L. V. Kale and S. Krishnan, “Charm++: A portable concurrent object
oriented system based on c++,” in Proceedings of the Eighth Annual
Conference on Object-oriented Programming Systems, Languages, and
Applications, ser. OOPSLA ’93, 1993, pp. 91–108.

[20] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
in Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPOPP ’95, 1995, pp. 207–216.

[21] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly, “Dande-
lion: A compiler and runtime for heterogeneous systems,” in Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
ser. SOSP ’13, 2013, pp. 49–68.

[22] S. J. Krieder, J. M. Wozniak, T. Armstrong, M. Wilde, D. S. Katz,
B. Grimmer, I. T. Foster, and I. Raicu, “Design and evaluation
of the gemtc framework for gpu-enabled many-task computing,” in
Proceedings of the 23rd International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 153–164.
[Online]. Available: https://doi.org/10.1145/2600212.2600228

[23] M. Kotsifakou, P. Srivastava, M. D. Sinclair, R. Komuravelli, V. Adve,
and S. Adve, “HPVM: heterogeneous parallel virtual machine,” in
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. Vienna, Austria: ACM, 2018, pp.
68–80.

[24] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey,
“Hpx: A task based programming model in a global address space,” in
Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models, ser. PGAS ’14, 2014, pp. 6:1–
6:11.

[25] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’12, 2012, pp. 66:1–66:11.

[26] R. Gioiosa, B. O. Mutlu, S. Lee, J. S. Vetter, G. Picierro,
and M. Cesati, “The minos computing library: Efficient parallel
programming for extremely heterogeneous systems,” in Proceedings
of the 13th Annual Workshop on General Purpose Processing Using
Graphics Processing Unit, ser. GPGPU ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1–10. [Online].
Available: https://doi.org/10.1145/3366428.3380770

[27] K. Spafford, J. Meredith, and J. Vetter, “Maestro: Data orchestration
and tuning for opencl devices,” in Proceedings of the 16th International
Euro-Par Conference on Parallel Processing, ser. Euro-Par’10, 2010, pp.
275–286.

[28] J. Kim, H. Kim, J. H. Lee, and J. Lee, “Achieving a single compute
device image in opencl for multiple gpus,” in Proceedings of the 16th
ACM Symposium on Principles and Practice of Parallel Programming,
ser. PPoPP ’11, 2011, pp. 277–288.

[29] T. Mattson, R. Cledat, V. Cavé, V. Sarkar, Z. Budimlić, S. Chatterjee,
J. Fryman, I. Ganev, R. Knauerhase, and M. Lee, “The open community
runtime: A runtime system for extreme scale computing,” in 2016 IEEE
High Performance Extreme Computing Conference, ser. HPEC ’16,
2016, pp. 1–7.

[30] K. Group, “Open compute language (openCL),” 2008.
[31] OpenMP, “OpenMP reference,” 1999.
[32] C. Margiolas and M. F. O’Boyle, “Palmos: A transparent, multi-tasking

acceleration layer for parallel heterogeneous systems,” in Proceedings
of the 29th ACM on International Conference on Supercomputing, ser.
ICS ’15, 2015, pp. 307–318.

[33] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and
J. J. Dongarra, “Parsec: Exploiting heterogeneity to enhance scalability,”
Computing in Science and Engg., vol. 15, no. 6, pp. 36–45, Nov. 2013.

[34] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel, “Ptask:
Operating system abstractions to manage gpus as compute devices,” in
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, ser. SOSP ’11, 2011, pp. 233–248.

[35] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “Snucl: An opencl
framework for heterogeneous cpu/gpu clusters,” in Proceedings of the
26th ACM International Conference on Supercomputing, ser. ICS ’12,
2012, pp. 341–352.

https://www.oneapi.com/
https://www.openmp.org/specifications/
https://www.openmp.org/specifications/
https://doi.org/10.1145/2600212.2600228
https://doi.org/10.1145/3366428.3380770


[36] I. Papadopoulos, N. Thomas, A. Fidel, N. Amato, and L. Rauchwerger,
“Stapl-rts: An application driven runtime system,” in Proceedings of the
29th ACM on International Conference on Supercomputing. Newport
Beach, California, USA: Association for Computing Machinery, 2015,
p. 425–434.

[37] J. Reinders, Intel Threading Building Blocks, 1st ed. O’Reilly &
Associates, Inc., 2007.

[38] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, and L. Ceze, “TVM: An automated end-to-end
optimizing compiler for deep learning,” in 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), 2018, pp.
578–594.

[39] Q. Meng, A. Humphrey, J. Schmidt, and M. Berzins, “Investigating
applications portability with the uintah DAG-based runtime system on
petascale supercomputers,” Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis on
- SC ’13, pp. 1–12, 2013.

[40] J. Lee, M. Samadi, and S. Mahlke, “Vast: The illusion of a large memory
space for gpus,” in Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation, ser. PACT ’14, 2014, pp. 443–
454.

[41] Y.-P. You, H.-J. Wu, Y.-N. Tsai, and Y.-T. Chao, “Virtcl: A framework
for opencl device abstraction and management,” in Proceedings of the
20th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP 2015, 2015, pp. 161–172.


	Introduction
	Contributions

	Motivation
	IRIS Overview
	IRIS Abstractions
	Platform Model
	Memory Model
	Programming Model
	Execution Model

	IRIS Compiler and Code Generation
	Shared Virtual Device Memory
	Configurable Device Selection Policies
	Dynamic Platform Loader
	Task Partitioning

	Evaluation
	Microbenchmarks 
	Kernels
	Proxy Application 

	Related Work
	Conclusions
	References

