
A Hierarchical Task Scheduler for
Heterogeneous Computing?

Narasinga Rao Miniskar1[0000−0001−8259−8891], Frank Liu1[0000−0001−6615−0739],
Aaron R. Young1[0000−0002−5448−4667], Dwaipayan Chakraborty2[0000−0002−3524−9071],

and Jeffrey S. Vetter1[0000−0002−2449−6720]

1 Advanced Computing Systems Research Section, Oak Ridge National Laboratory,
Oak Ridge, TN 37831, U.S.A.

{miniskarnr, liufy, youngar, vetter}@ornl.gov
2 Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, U.S.A.

Abstract. Heterogeneous computing is one of the future directions of HPC. Task
scheduling in heterogeneous computing must balance the challenge of optimizing
the application performance and the need for an intuitive interface with the pro-
gramming run-time to maintain programming portability. The challenge is further
compounded by the varying data communication time between tasks. This paper
proposes RANGER, a hardware-assisted task-scheduling framework. By inte-
grating RISC-V cores with accelerators, the RANGER scheduling framework di-
vides scheduling into global and local levels. At the local level, RANGER further
partitions each task into fine-grained subtasks to reduce the overall makespan. At
the global level, RANGER maintains the coarse granularity of the task specifica-
tion, thereby maintaining programming portability. The extensive experimental
results demonstrate that RANGER achieves a 12.7× performance improvement
on average, while only requires 2.7% of area overhead.

Keywords: Extreme Heterogeneity · Accelerators · HPC System Architecture · Chal-
lenges in Programming for Massive Scale

1 Introduction

As technology scaling comes to a standstill, heterogeneous computing has become a vi-
able solution for ensuring the continuous performance improvement of high-performance
computing (HPC). One specific notion of heterogeneous computing is the future of “ex-
treme” heterogeneity [35], which is when the general-purpose microprocessors are aug-
mented by diverse types of accelerators in vastly different architectures (e.g., general
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purpose GPUs, FPGAs, neuromorphic arrays and special-purpose accelerator ASICs).
These accelerators can have diverse functionalities (e.g., different computational ker-
nels in machine learning) but are also spatially distributed. To fully materialize the
potential of heterogeneous accelerators, it is crucial to maintain and improve the pro-
gramming portability and productivity of the applications and to intelligently manage
the resources presented by the heterogeneous accelerators.

Task parallelism is a highly effective parallel programming model for achieving pro-
gramming portability and productivity. It allows the run-time to automatically schedule
atomic computing tasks on the available resources while honoring the data dependen-
cies between tasks. Task parallelism is widely used in many programming systems as
either a direct abstraction available to the user or in the underlying implementation (e.g.,
OpenMP [23], OpenACC [22], CUDA [21], Charm++ [14], Cilk [6], OpenCL [16]). In
task parallelism, the dependencies among different tasks can be represented by a di-
rected acyclic graph (DAG), which contains information such as task computation time
on different devices (i.e., CPUs or accelerators) represented by the nodes or vertices
of the DAG, the data dependencies among the tasks represented by the directed edges,
and the amount of data that must be communicated between different tasks represented
as an edge property of the DAG. Even for homogeneous devices, task scheduling is
NP-complete [34]. Hence, many research activities are focused on developing heuris-
tics to ensure good completion times (i.e., makespans). Task scheduling in a hetero-
geneous computing environment is a much more challenging problem not only due to
the different execution times of the heterogeneous devices but also due to varying data
communication latency between devices.

With its many diverse accelerators, extremely heterogeneous computing poses some
unique challenges for task scheduling. First, as the accelerators become more diverse,
one-size-fits-all, cookie-cutter-style device management might not be optimal. Each
kernel accelerator has a unique data access pattern and requirement for the hardware
resources (e.g., sustained bandwidth to the global memory, size of the scratchpad mem-
ory). It is difficult to balance the needs of all kernel accelerators by a generic, central-
ized scheduler. Second, as more kernel accelerators with diverse capabilities become
available, it becomes necessary to ensure that a larger pool of tasks is present to ensure
application scalability. Performing task scheduling for many tasks for an increasing
number of devices will require substantial computing resources. Finally, a larger pool
of tasks poses a widening dichotomy between the optimal management of the resources
and the need to ensure programming portability.

This work proposes RANGER, a hierarchical task scheduler, to address these chal-
lenges. From an algorithm perspective, RANGER performs task scheduling at two lev-
els. At the top (i.e., global) level, RANGER considers the scheduling decision of the
current task and its immediate child tasks on the decision tree to ensure global optimal-
ity. At the lower (i.e., local) level, RANGER deploys an accelerator-specific scheduler
to further partition the task into subtasks while considering the nature of the computa-
tional kernel, its computational density, and the available hardware resources, such as
the scratchpad memory module. Because the local schedulers have direct control over
the interconnect switching fabric and other available hardware resources (e.g., accelera-
tors, DMAs), they are capable of making optimal control decisions. In regard to imple-
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mentation, instead of burdening the top-level global task scheduler with many subtasks,
which are substantially more in quantity, each kernel accelerator is augmented with a
customized RISC-V core to off-load the computational overhead of low-level schedul-
ing and resource management. The most notable benefit of the hierarchical scheduling
approach is that it bridges the dichotomy of coarse-grained scheduling desired by in-
terfacing with programming models with the need for fine-grained, kernel/accelerator-
dependent local task scheduling to ensure the overall optimality. Through extensive ex-
perimentation, we demonstrated that RANGER achieves a 12.7× makespan improve-
ment on average compared with an equivalent centralized scheduler, while only requires
a 2.74% area overhead. The experiments also demonstrated the excellent scalability of
the RANGER architecture with respect to the number of parallel applications

The main contributions of this work are as follows.

1. We propose RANGER, a hierarchical task-scheduling framework for extremely
heterogeneous computing.

2. We design and implement the overall RANGER architecture, as well as customized
RISC-V cores and related logic in the GEM5 simulator [5].

3. We design and implement local Accelerator-Specific Command Schedulers (ASCS).
4. We conduct thorough experimentation to demonstrate the effectiveness of RANGER

and to provide quantitative area and computational overhead.

The remainder of this paper is organized as follows. Section 2 discusses the background
of task scheduling and related work. Section 3 describes the details of RANGER and its
implementations. Section 4 presents experimental evaluations, followed by conclusions
and future work in Section 5.

2 Background and Related Work

Task scheduling is a well-studied topic in disciplines such as computer architecture,
programming languages, embedded systems, and real-time computing. A list of rep-
resentative related works [1, 6, 7, 9, 11, 15, 17, 19, 20, 24, 29, 34] cover diverse topics,
such as static (i.e., offline) and dynamic (i.e., online) scheduling, scheduling with hard
deadlines, and hardware-enabled scheduling policies.

In this paper, we assume that the dependencies among tasks are either fully or par-
tially known. A widely accepted formalism to describe task dependencies is based on
graphs [1, 33]. An example is shown in Fig. 1 in which an application is represented
by a DAG, defined by the tuple G = (V,E), and a companion computation cost matrix
(CCM). The vertex set V of size v represents the tasks in the application, and the edge
set E of size e represents the data dependencies between the tasks. If there is an edge
(ei j) from task Ti to Tj, it means that task Tj has a data dependency to task Ti. Hence,
task Tj cannot start until task Ti is completed. The CCM of size v× p represents the
execution time of each task on each processing device, where p is the size of the pro-
cessor set P. Each edge also contains a weight, which represents the communication
cost between the tasks. Theoretically, the communication time depends not only on the
tasks but also on which device the communication is originated and on which device it
is terminated. However, one common approximation is to estimate the communication
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time based on the amount of data that must be transferred and the average communica-
tion bandwidth, as well as the average starting latency. This common approximation is
defined as follows [33]:

c(i, j) = L+
data(i, j)

B
, (1)

where B is the average communication bandwidth between computing devices, and
data(i, j) reflects the amount of data that must be transferred from task i to task j. L
represents the average latency before any bulk data communication can be started. Gen-
erally, L could include hardware latency, such as the signal handshaking time for inter-
connects, and software latency, such as the time needed for context switching by the
operating systems. With this approximation, the average communication time between
tasks can be determined as shown by the edge weights in Fig. 1.

T1

T2 T3 T4 T5 T6

T7 T8 T9

T10

17 31 29 13 7

7

7

16 11 57 5

9 42

3 30

Fig. 1: DAG of an application with 10 tasks and the CCM for each task on three devices.

The objective of task scheduling is to minimize the overall execution time of the ap-
plication or makespan. Because the task scheduling problem is NP-complete [34], many
existing methods are based on heuristics. Among static task schedulers, Predict Earliest
Finish Time (PEFT) [1] has a good trade-off between accuracy and computational com-
plexity. Based on the Heterogeneous Earliest Finish Time (HEFT) [33] scheduler, PEFT
considers the impact that the current scheduling decision has on all subsequent schedul-
ing decisions within the decision tree. To estimate the potential impact of a scheduling
decision, it uses a clever method to compute an optimal cost table, thereby avoiding the
costly operation of fully traversing the whole decision tree.

The concept of a task is the atomic unit for data transferring and computation. Im-
plicitly, it is assumed that the data needed for each task have been readily transferred to
the local scratchpad memory on each device before the computation can start. For each
application, the task specifications can be given at different levels. For example, tasks
can be further partitioned into finer subtasks by inspecting the computation kernels and
the dependencies between more fine-grained subcomponents. The granularity of the
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task specification has significant practical implications. On one hand, coarse-grained
task specifications are more acceptable and have better programming portability in the
programming models. They also imply fewer number data transfers and better data
transferring efficiency. However, a higher computational density in each task also means
that larger amounts of data must be transferred and stored on the local memory, which
requires a larger local scratchpad memory module on each device. On the other hand,
partitioning tasks into finer granularity has the benefit of requiring smaller scratchpad
memory on each accelerator device. The larger number of tasks also gives the sched-
uler the opportunity to fully leverage all available devices, thus potentially achieving
better scalability. However, because there are many more data transferring jobs, data
transferring becomes less efficient due to the larger number of starting latency.

The biggest hurdle of fine-grained tasks specification is the severe loss of the pro-
gramming portability. As shown later in this paper, the need to specify many tasks in
the programming systems makes it difficult to interface with the programming mod-
els. This constraint was investigated in a recent study [31] by analyzing applications’
performance and their efficiency via a proposed metric called minimum effective task
granularity. The paper concluded that the cost of sending data reflected as part of hard-
ware latency and dispatching tasks reflected in the software latency impose a floor on
the granularity.

Another body of closely related work is off-loading scheduling tasks to hardware.
The concept was explored in several studies [3,8,26,30,30]. In a more recent study [20],
a Rocket Chip [4]-based hardware scheduler demonstrated impressive performance im-
provements when compared with a pure software implementation of the same schedul-
ing method.

In this paper, we propose RANGER, a hierarchical scheduler, to address the con-
flicting dichotomy between programming portability and the requirements for better re-
source management in heterogeneous computing. At the top (i.e., global) level, RANGER
maintains the task specifications at a coarse granularity. Hence, it is easy for RANGER
to interface with existing task dependency specification mechanisms implemented in
various programming models. At the lower level, RANGER uses Accelerator-Specific
Command Scheduler (ASCS), which are specifically designed for each device to in-
terface with the top-level scheduler and global memory. Based on the characteristics
of the computational kernel and available resources, ASCS partitions each task into
subtasks and manages them. In the RANGER architecture, the ASCS is executed on a
customized RISC-V [36] processor core embedded in each accelerator to off-load the
computations of task scheduling from the central host. The fine-grained subtask speci-
fications and local ASCS schedulers ensure better use of the local hardware resources,
such as the local scratchpad memory. The amortized data communication latency also
makes it possible for the global coarse-grained scheduler to better use available accel-
erator devices. Unlike other hardware off-loading of task scheduling work—such as in
Arnold et al. [3] and Morais et al. [20]—the main novelty of RANGER is the com-
bination of two techniques by developing hardware-assisted hierarchical scheduling to
address the conflicting dichotomy between programming portability and the resource
requirement.
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3 RANGER Architecture and Implementation

This section describes the RANGER architecture design, accelerator devices, and over-
all hierarchical task-scheduling method.

3.1 Baseline Accelerator Architecture

The baseline heterogeneous computing platform is a heterogeneous computing plat-
form, as shown in Fig. 2. The host, an array of heterogeneous accelerator devices, and
the main memory are connected by a shared bus. A top-level run-time runs on the
host, which is responsible for communicating with the applications, determining the
task schedules and assignments, and dispatching the scheduling decisions to each de-
vice. Once a task is dispatched to a device, each device would communicate with the
global memory through its DMA channel, fetch the needed data from global memory to
scratchpad memory on the device, launch the computation, and transfer the results back
to global main memory after the task has completed. The global main memory usually
has the characteristics of higher density and lower cost per gigabyte but longer access
time (e.g., DRAM memory). On the other hand, the local scratchpad memory has much
faster access time but at a lower density (e.g, SRAM memory). First-in-first-out (FIFO)
logic circuits are inserted at various interfaces. The global bus can be implemented with
different switching fabrics. This study uses the AXI bus [2], the industry standard for
on-chip interconnect, although it is also possible to use various network-on-chip (NoC)
switching fabrics.

Host (RISC-V)
Run-time Framework

Task graph submission

Application

Derive Task Graph

FIFO

Interconnect : Shared Bus / NoC

Centralized
Heterogenous Scheduler

Task Dispatch

ApplicationApplication

FIFO
Task Metadata 

Initialization

Main 
Memory

(DDR4 / HBM)

DMAs DMAs DMAs
Accelerator-2

(Conv128)
Accelerator-1

(Conv1024)
Accelerator-N

(Dense)

FIFO FIFO

Scheduler

Fig. 2: Baseline architecture design of the heterogeneous accelerator platform.

3.2 RANGER Architecture and Memory-Mapped IO Interface

The RANGER architecture is shown in Fig. 3. Compared with the baseline architecture
design shown in Fig. 2, each device is augmented with a RISC-V processor, which
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Fig. 3: RANGER architecture design of the heterogeneous accelerator platform.

takes control of the interface to the global bus, as well as the scratchpad memory and
accelerator.

A more detailed view of each device is shown in Fig. 4. The accelerator on each
device interfaces with the RISC-V core through memory-mapped I/O. This is facili-
tated by the added MEMCTRL logic, which can determine whether the requested mem-
ory operation (LOAD/STORE) is intended for the accelerator, the DMA-In or DMA-
Out channel to the local scratchpad memory, or the main memory (DRAM). Further-
more, each DMA channel and the accelerator on the device also have their own unique
memory-mapped registers.

Accelerator

MEMCTRL

DMA
In

SRAM (Buffers)

DMA
Out

RISC-V

Ctrl AXI Bus

M
em
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y 

M
ap
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d 

IO

RISC-V (Scheduler) with Coarse Grain Scheduler

Device

Wide bus

Data Ctrl DataCtrl

FIFO

Fig. 4: RANGER Device: RISC-V, accelerator and DMA channels with memory-mapped I/O.



8 N. Miniskar, F. Liu, A.R. Young, D. Chakraborty and J.S. Vetter

As an illustration, a memory-mapped register for a convolution accelerator (CONV)
is shown in Tab. 1. The DMA memory-mapped I/O configuration enables the transfer-
ring of any tile representing a 3D array in the DRAM memory to the local scratchpad
SRAM by specifying offsets in the (x,y,z) plane. The number of banks in the SRAM
is designed to be twice the number of inputs and outputs required for the accelerator
to ensure that the SRAM design is equivalent to a bank conflict-free design. The as-
signment of the SRAM bank to the input buffer is determined by the controller kernel,
which runs on the embedded RISC-V core.

Table 1: Memory-mapped IO registers of a convolution accelerator in RANGER
Register MEMIO Offset Range of Values

ACC_SRC_ADDR 0x00 32-bit SRAM address
ACC_DST_ADDR 0x04 32-bit SRAM address
ACC_IN_XYZ_OFFSET 0x08 3D-(X,Y,Z) offsets, each 20bit
ACC_OUT_XYZ_OFFSET 0x10 3D-(X,Y,Z) offsets, each 20bit
ACC_OUT_XYZ_SIZE 0x18 64-bit (X,Y,Z) size, each 20bit
ACC_KERNEL_STRIDE 0x20 32-bit (Kernel-size, Stride-size)

ACC_CTRL 0xF8 0: DO NOTHING
1: START Computation

ACC_STATUS 0xFC
Returns status
0: Busy Running
1: Free

3.3 Top-Level Scheduler

The top-level, coarse-grained global scheduler runs on the host shown in Fig. 3. Theo-
retically, any task scheduler from a rich body of research can be used as the top-level
scheduler. In this study, PEFT [1] was implemented as the global scheduler to make it
easier to compare RANGER performance with other solutions. To populate the required
CCM of PEFT, each device—RISC-V, the added control logic, the DMA interface, and
the accelerator—was implemented in GEM5. Each task was profiled to generate the
corresponding entry in the CCM. It is also possible to use other performance prediction
techniques, such as Johnston et al. [13] or Liu et al. [18]. The run-time range of each task
in this study is on the order of milliseconds. Hence, extra effort was taken to optimize
the coarse-grained scheduler to ensure that each scheduling decision can be completed
within 1 ms on the customized RISC-V core. The computed scheduling decisions are
formatted as the mapping of tasks to the available devices in which each task specifica-
tion contains a set of commands and input/output memory locations. These commands
are pushed into the FIFO queue of the corresponding device, as shown in Fig. 3.

3.4 Low-Level Scheduler

The low-level scheduler is responsible for further partitioning the given task into finer
granularity. The partitioning and sequencing of the subtasks and their dependencies can
vary from one kernel accelerator to the other. For example, a convolution kernel requires
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two sets of input and generates one set of output, whereas a batch normalization (BN)
kernel has only one set of input and one set of output. Furthermore, each of these two
kernels has different computational density. To maintain the flexibility and ensure the
optimality, the authors developed ASCS. Based on the sizes of the inputs and outputs of
a given task, its computational density, and the amount of available scratchpad SRAM
memory, an ASCS scheduler generates subtasks, each of which also contains the in-
structions on how to configure the accelerator/DMA-channel-specific memory-mapped
addresses. By doing so, ASCS provides more fine-grained control of the DMA channels
and its interface to the global DRAM.

Because of their application-specific nature, the ASCS schedulers are specially tai-
lored for each kernel accelerator as a part of the accelerator development process. They
are also parameterized so that when the accelerator hardware specification (e.g., the
size of the accelerator, the amount of scratchpad memory) changes, the ASCS sched-
ulers can be easily updated.

For example, a high-level description of the ASCS scheduler for the convolution
accelerator is shown in Algorithm 1. The functionality of a convolution operation is
to compute a stream of output by convoluting a stream of input with a set of given
weights. The convolution is carried out by the unit of “tile.” Depending on the available
scratchpad memory, different tile size configurations can lead to different decisions on
whether to leverage weight reuse, input reuse, or output reuse. In Algorithm 1, the
subtasks pipeline is created and initialized in lines 1 and 2. Depending on the tile con-
figuration, single or double buffers are allocated, as shown in line 3. After initialization,
the four nested loops shown from lines 4 to 7 iterate in order of tile height, tile weight,
the channels, and the inputs. The pipelined subtasks are identified by their individual
timestamps and maintained in a circular queue.

Within the innermost loop, the DMA process to fetch the weights, inputs, and out-
puts will be activated, as required, based on the data reuse leveraged by the kernel. Lines
11, 13, and 16 indicate the configuration of DMA channels for the weights, input, and
output tiles. Line 17 is the computation of the scheduled subtask. Line 18 performs the
configuration of the DMA channels and accelerator for the next subtask in the queue.
All three routines are nonblocking and thus are executed concurrently.

The ASCS routines are designed and developed to be lightweight and are executed
on the RISC-V processor on each accelerator device. Combined with the added periph-
eral logic, they provide configurability and flexibility to the accelerator. By considering
the available computational resources (e.g., the number of Multiplier-Accumulator or
MAC units), computational density of the kernel, and size of the available scratchpad
memory, the ASCS schedulers in RANGER ensure that the optimal tile size is used
so that the execution time of the subtasks, DMA transferring time, and computation
time of the subtasks are balanced to achieve maximal throughput for the given task, as
illustrated in Fig. 5.

3.5 Implementation Details of Accelerator Kernels

This study implemented three types of accelerators: 2D CONV, BN, and fully con-
nected dense layer (DENSE). Multiple flavors of each type are implemented by chang-
ing the number of MAC units and the scratchpad memory size. For example, five fla-
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// Input feature map: (OH, OW, OD),       Output feature map: (IH, IW, ID)
// Weights : (OD, ID, KH, KW)
// Input Tile: (oth, otw, otd),                     Output Tile: (ith, itw, itd)

1:     (weights_task, ifmap_task, kernel_task, ofmap_task) = CreateSubTasksForCommands(task);
2:     pipeline = new Pipeline ( [weights_task, ifmap_task, kernel_task, ofmap_task ] )
3:     AllocateStreamDoubleBuffers(pipeline)
4:     for oh: 0 to OH step oth   do
5:         for ow: 0 toOW step otw   do
6:             for od: 0 to OD step otd   do
7:                 for id: 0 to ID.  step itd    do
8:                      ts = pipeline->GetCurrentTimeStamp();
9:                      next_ts = pipeline->GetNextTimeStamp();
10:                      if weight_dma_to_be_activated:
11:                          pipeline->ConfigureDMA(next_ts, weights_task, dram_weights_address, sram_weights_address)
12:                    if input_fmap_to_be_activated:
13: pipeline->ConfigureDMA(next_ts, ifmap_task, dram_ifmap_address, sram_ifmap_address)
14:                    pipeline->ConfigureKernel(next_ts+1, kernel_task, sram_weights_address, sram_ifmap_address, 

sram_ofmap_address)
15:                    if output_fmap_to_be_activated:
16: pipeline->ConfigureDMA(next_ts+2, ofmap_task, sram_ofmap_address, dram_ofmap_address) 
17:                    pipeline->RunCurrentTimeStampTasks()
18:                    pipeline->ConfigureNextTimeStampTasks()
19: pipeline->WaitForTasks()
20:                end
21:            end
22:        end
23:    end
24:    pipeline->RunAllPrologTasks()

Algorithm 1: High-level description of ASCS scheduling algorithm for the convolution
kernel.

DMA-In-1 Kernel-1 DMA-Out-1

T0 T1 T2

DMA-In-2 Kernel-2 DMA-Out-2

DMA-In-3 Kernel-3 DMA-Out-3

DMA-In-4 Kernel-4 DMA-Out-4

T3 T4 T5

Sub-Tasks Set-1

Sub-Tasks Set-2

Sub-Tasks Set-3

Sub-Tasks Set-4

Steady 
State

L C1

C2

C3

C4

Fig. 5: Illustration of ASCS subtask execution pipeline. The “C” blocks include the configuration
of DMA channels and accelerators for each subtask. Starting from the second subtask, they are
concurrently executed with the DMA transfer of the previous subtask.

vors of CONV accelerator were implemented: CONV1024, CONV512, CONV256,
CONV128, and CONV64. Generally speaking, the bigger accelerators have higher per-
formance but also require larger area. The accelerator statistics are listed in Tab. 2. The
BN accelerator requires less scratchpad memory because the nature of the kernel is sim-
ilar to the inner product operation in the numerical linear algebra. The area estimates are
based on the data extracted from various designs fabricated on a TSMC 16 nm CMOS
technology [27].

Using these kernel accelerators, we implemented multiple heterogeneous designs of
the RANGER architecture, as shown in Tab. 3. The cycle-accurate GEM5 simulator was
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Table 2: List of kernel accelerators and their area estimations in a TSMC 16 nm technology.

Accelerator Functionality MAC Units SRAM Size (KB) Area (mm2)

1 CONV1024 2D Convolution 1024 256.0 1.81
2 CONV512 2D Convolution 512 256.0 1.28
3 CONV256 2D Convolution 256 256.0 1.01
4 CONV128 2D Convolution 128 256.0 0.88
5 CONV64 2D Convolution 64 128.0 0.59
6 BN1024 Batch Normilization 1024 8.0 1.09
7 BN512 Batch Normilization 512 4.0 0.55
8 BN256 Batch Normilization 256 2.0 0.28
9 BN128 Batch Normilization 128 1.0 0.14
10 BN64 Batch Normilization 64 0.5 0.08
11 DENSE1024 Dense 1024 128.0 1.30
12 DENSE512 Dense 512 128.0 0.76
13 DENSE256 Dense 256 128.0 0.50
14 DENSE128 Dense 128 128.0 0.37
15 DENSE64 Dense 64 128.0 0.30

extended [5] to include the accelerators, memory-mapped I/O logic, and DMA compo-
nents. The DMA component was implemented from scratch with the support of tiled
3D data transfer and burst mode use of the DMA channels. For each heterogeneous de-
sign, we also implemented a baseline version with only the accelerators and without the
RISC-V core and extra control logic. Overall, the implementation is realized by ∼1,800
lines of C++ code and ∼700 lines of Python code for configuration. The statistics and
characteristics of these RANGER and baseline designs are tabulated in Tab. 3.

Table 3: Various heterogeneous designs, the number of kernel accelerators, and the estimated
area. Design A and B are the aliases of Design 1 and 2, respectively.

Accelerators Area mm2

2D Convolution Batch Normilization Dense Total
1024 512 256 128 64 1024 512 256 128 64 1024 512 256 128 64 RANGER Baseline Overhead

Design

Design 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 11.290 10.945 3.15 %
Design 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 30 22.581 21.891 3.15 %
Design 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 35 28.266 27.461 2.93 %
Design 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 40 33.951 33.031 2.79 %
Design 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 45 39.636 38.601 2.68 %
Design 6 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2 50 45.321 44.171 2.60 %
Design 7 7 7 7 7 7 2 2 2 2 2 2 2 2 2 2 55 51.006 49.741 2.54 %
Design 8 8 8 8 8 8 2 2 2 2 2 2 2 2 2 2 60 56.691 55.311 2.49 %
Design 9 9 9 9 9 9 2 2 2 2 2 2 2 2 2 2 65 62.376 60.881 2.46 %
Design 10 10 10 10 10 10 2 2 2 2 2 2 2 2 2 2 70 68.061 66.451 2.42 %

Design A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 11.290 10.945 3.15 %
Design B 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 30 22.581 21.891 3.15 %
Design C 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 45 33.871 32.836 3.15 %
Design D 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 60 45.161 43.781 3.15 %
Design E 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 75 56.452 54.727 3.15 %
Design F 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 90 67.742 65.672 3.15 %
Design G 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 105 79.032 76.617 3.15 %
Design H 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 120 90.323 87.563 3.15 %

Average 2.74 %
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The area of each RISC-V core is estimated to be 0.023 mm2 [37] in the TSMC 16 nm
technology. Tab. 3 shows that the RANGER architecture only requires ∼2.74% of area
overhead compared with the corresponding baseline designs. The largest RANGER
core has an estimate area of 90 mm2. As a comparison, a quad-core Intel Coffee Lake
processor has the die area of 126 mm2 in a comparable technology [12].

4 Experimental Evaluation

To evaluate the performance of RANGER, the authors used a run-time framework run-
ning on the host RISC-V core shown in Fig. 3. The task descriptions are specified in
JSON format, which is the output of a Python-based converter. Values of CCM of the
top-level scheduler are the profiling results of the individual kernels in GEM5. The
makespans of tasks and applications are extracted from the performance counters of
DMAs from GEM5.

4.1 Application Benchmarks

The inference phase of four widely used deep neural networks (DNNs) were used as
the benchmarks: InceptionV3 [32], ResNet-50 [10], UNet [25], and Vgg16 [28]. We
would like to point out that RANGER is a general-purpose scheduler and can handle
any DAG tasks. In this study DNNs inference applications were the chosen simply
because their DAGs are readily available, and they represent increasingly important
workloads. The details of these four DNNs are omitted due to space limitation. Each
inference application comprises three types of computational kernels: CONV, BN, and
fully connected DENSE. For example, InceptionV3 is represented by 189 tasks—94
CONV, 94 BN, and one DENSE—with its task DAG shown in Fig. 6.

Fig. 6: Task DAG of Inception-v3. The left-most node is the source node of the DAG, and the
sink node is at the extreme right.

The execution time of each application is measured by the cycle counts reported
by GEM5. For comparison, the same set of applications was also run on the baseline
design shown in Fig. 2 with the detailed design specs tabulated in Tab. 3. The results
are tabulated in Tab. 4. As shown in the table, across multiple design points, the av-
erage speedup of Inception-v3, ResNet, VGG16, and UNet achieved by RANGER are
17.66×, 9.10×, 16.96×, and 6.96× respectively, with the average speedup of 12.7×
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Table 4: Comparison of makespans for various RANGER and baseline designs. On average,
RANGER achieves a 12.7× speedup.

Makespan
Model Inception-v3 Resnet-50 VGG16 UNet
Architecture RANGER Baseline Speedup RANGER Baseline Speedup RANGER Baseline Speedup RANGER Baseline Speedup
Design

Design 1 94,788,333 762,320,311 8.04× 88,346,488 504,482,689 5.71× 389,202,487 3,193,921,550 8.21× 336,496,490 1,233,341,834 3.67×
Design 2 53,422,061 752,853,720 14.09× 57,531,844 500,829,541 8.71× 209,315,117 3,149,123,579 15.04× 201,002,387 1,177,865,323 5.86×
Design 3 41,881,254 752,544,223 17.97× 52,782,400 500,433,710 9.48× 191,533,321 3,147,951,787 16.44× 173,986,414 1,171,882,097 6.74×
Design 4 38,749,897 752,450,123 19.42× 52,195,186 500,340,314 9.59× 181,632,752 3,147,767,996 17.33× 157,652,345 1,169,892,512 7.42×
Design 5 37,999,017 752,407,810 19.80× 52,191,088 500,295,143 9.59× 180,193,518 3,147,649,984 17.47× 150,250,684 1,169,590,055 7.78×
Design 6 37,988,551 752,393,040 19.81× 52,191,088 500,288,595 9.59× 180,193,518 3,147,724,843 17.47× 150,250,684 1,169,578,215 7.78×
Design 7 37,914,589 752,387,551 19.84× 52,190,081 500,282,221 9.59× 180,193,518 3,147,642,459 17.47× 150,250,684 1,169,575,296 7.78×
Design 8 37,898,912 752,382,660 19.85× 52,190,081 500,275,555 9.59× 180,193,518 3,147,724,163 17.47× 150,250,684 1,169,574,480 7.78×
Design 9 37,891,335 752,382,660 19.86× 52,190,081 500,272,549 9.59× 180,193,518 3,147,669,094 17.47× 150,250,684 1,169,574,480 7.78×
Design 10 37,618,903 752,367,084 20.00× 52,190,081 500,264,005 9.59× 178,630,640 3,147,724,117 17.62× 147,870,807 1,169,574,480 7.91×

Design A 94,788,333 762,320,311 8.04× 88,346,488 504,482,689 5.71× 389,202,487 3,193,921,550 8.21× 336,496,490 1,233,341,834 3.67×
Design B 53,422,061 752,853,720 14.09× 57,531,844 500,829,541 8.71× 209,315,117 3,149,123,579 15.04× 201,002,387 1,177,865,323 5.86×
Design C 42,241,318 752,541,894 17.82× 52,447,643 500,420,375 9.54× 174,801,184 3,144,474,922 17.99× 173,986,414 1,171,816,637 6.74×
Design D 38,570,566 752,444,207 19.51× 51,672,158 500,332,941 9.68× 155,344,163 3,144,196,072 20.24× 157,652,123 1,169,797,015 7.42×
Design E 37,793,805 752,406,134 19.91× 51,362,009 500,254,081 9.74× 153,596,950 3,144,134,148 20.47× 150,247,240 1,169,471,954 7.78×
Design F 37,793,452 752,401,577 19.91× 51,162,596 500,254,081 9.78× 153,596,950 3,144,134,148 20.47× 150,247,240 1,169,470,736 7.78×
Design G 37,708,203 752,386,686 19.95× 51,162,596 500,254,081 9.78× 153,596,950 3,144,134,148 20.47× 150,247,240 1,169,468,346 7.78×
Design H 37,704,900 752,386,686 19.95× 51,161,299 500,254,081 9.78× 153,596,950 3,144,134,148 20.47× 150,247,240 1,169,468,346 7.78×

Average 17.66× 9.10× 16.96× 6.96×

across all four applications. To execute the benchmarks on the accelerator cores by
using the baseline architecture, the tasks in each application must be further partitioned
based on the amount of scratchpad memory available. The numbers of the fine-grained
subtasks are shown in Tab. 5, which also includes the corresponding RANGER task
numbers as a comparison. In this case, scheduling these subtasks is computed by the
host. Fig. 7 shows RANGER scheduling decisions of 10 Inception-v3 applications run-
ning in parallel on Design 1 from Tab. 3.

Table 5: The numbers of tasks that the global host must consider in RANGER and baseline
architecture.

Architecture RANGER Baseline Increase
Model

Inception-v3 189 20,469 108×
Resnet-50 107 6,824 64×
UNet 17 12,372 728×
VGG16 16 38,064 2,379×

4.2 Scalability Study

This section further investigates the scalability of the RANGER architecture. To sat-
urate the many kernel accelerators in the designs, we increased the repetition of the
applications to 10 (i.e., during each experiment,10 identical but independent applica-
tions were issued on a given RANGER design). The results are plotted with respect to
various RANGER designs in Fig. 8. This study is similar to the strong-scaling study in
the traditional HPC applications. The plot clearly shows that the speedup is plateaued
to ∼2× at Design 3, which has 35 kernel accelerators.
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Fig. 7: Scheduling decisions of 10 parallel instances of Inception-v3 computed by RANGER on
Design 1. Each box represents a task being scheduled on a particular device.
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Fig. 8: Measured speedup of RANGER by running 10 parallel instances of each application with
respect to Designs 1–10, which contain an increasing number of kernel accelerators. The speedup
plateaus at Design 3 due to an insufficient number of tasks for the available kernel accelerators.

In the second study, the experiment was repeated by varying the application repe-
titions, which is similar to the weak-scaling study of HPC workloads. The results are
shown in Fig. 9. With repetition set to 100, the RANGER architecture demonstrates
good scalability from Design A, which has 15 kernel accelerators, to Design H, which
contains 120 kernel accelerators.

4.3 Overhead of the Local Schedulers

The speedups achieved by RANGER are contributions of the top-level hierarchical
scheduling scheme and the implementation of the low-level ASCS. To investigate the
performance inefficiency caused by the two-level scheduling scheme, a collection of
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Fig. 9: Measured speedup of RANGER by running an increasing number of instances of the same
application on Designs A–H. RANGER demonstrates excellent scalability with 100 instances of
application running in parallel.

hypothetical reference designs were designed. Compared with RANGER designs, each
reference design has an identical number of kernel accelerators as its RANGER coun-
terpart but with a sufficiently large scratchpad memory to accommodate all needed
data. Hence, there is no need to invoke local schedulers because there is no need to
further partition each task. Instead, the host processor can directly dispatch the tasks to
the accelerators based on the top-level scheduling decisions. With much larger scratch-
pad memory modules, the estimated areas of the reference designs are listed in Tab. 6.
These reference designs cannot be realistically implemented due to their large areas.
For instance, nine out of 10 reference designs have the estimate area of over 200 mm2,
which makes them extremely expensive to manufacture. As a reference point, an octa-
core Intel Coffee Lake processor on a comparable technology only has a die area of
174 mm2 [12].

The comparison on the RANGER design makespans and the reference designs
are tabulated in Tab. 7. For Inception-v3 and ResNet, RANGER designs clearly have
similar makespans with small but consistent improvements. For VGG16 and UNet,
RANGER designs show a 31–21% degradation of the makespans. Across all four appli-
cations, RANGER shows an average of 10.88% on makespan penalties. The host runs
the identical top-level scheduler with identical DAG specifications in both RANGER
and reference studies. Therefore, the measured penalty directly indicates the perfor-
mance overhead of the low-level ASCS scheduler. However, given the impracticality of
the reference designs, the authors believe that this magnitude of overhead is completely
acceptable.
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Table 6: Area estimate of reference designs compared with their RANGER counterparts. Designs
of these sizes are extremely expensive to manufacture.

Area mm2

Model
Architecture RANGER Reference Difference
Design

Design 1 11 165 14.61×
Design 2 23 275 12.18×
Design 3 28 337 11.93×
Design 4 34 440 12.96×
Design 5 40 445 11.23×
Design 6 45 484 10.67×
Design 7 51 512 10.04×
Design 8 57 546 9.63×
Design 9 62 603 9.67×
Design 10 68 662 9.73×

Table 7: Comparison of makespans for RANGER and reference. On average, RANGER shows
only 10.88% of penalty, which is the measurement of performance overhead of the local ASCS.

Makespan
Model Inception-v3 Resnet-50 VGG16 UNet
Architecture RANGER Reference Difference RANGER Reference Difference RANGER Reference Difference RANGER Reference Difference
Design

Design 1 94,788,333 95,707,644 -0.96% 88,346,488 88,621,038 -0.31% 389,202,487 214,684,328 81.29% 336,496,490 216,796,889 55.21%
Design 2 53,422,061 56,538,771 -5.51% 57,531,844 63,717,300 -9.71% 209,315,117 165,634,098 26.37% 201,002,387 156,806,696 28.18%
Design 3 41,881,254 45,388,469 -7.73% 52,782,400 58,538,562 -9.83% 191,533,321 150,559,308 27.21% 173,986,414 145,184,318 19.84%
Design 4 38,749,897 40,891,867 -5.24% 52,195,186 56,076,426 -6.92% 181,632,752 144,136,809 26.01% 157,652,345 134,955,240 16.82%
Design 5 37,999,017 39,601,255 -4.05% 52,191,088 55,193,132 -5.44% 180,193,518 141,111,694 27.70% 150,250,684 129,117,096 16.37%
Design 6 37,988,551 38,921,698 -2.40% 52,191,088 54,871,507 -4.88% 180,193,518 139,536,510 29.14% 150,250,684 128,893,489 16.57%
Design 7 37,914,589 38,412,723 -1.30% 52,190,081 54,847,500 -4.85% 180,193,518 138,354,082 30.24% 150,250,684 127,945,051 17.43%
Design 8 37,898,912 38,260,460 -0.94% 52,190,081 54,561,879 -4.35% 180,193,518 137,473,689 31.07% 150,250,684 127,915,851 17.46%
Design 9 37,891,335 38,260,436 -0.96% 52,190,081 54,561,879 -4.35% 180,193,518 137,473,689 31.07% 150,250,684 127,915,851 17.46%
Design 10 37,618,903 37,782,552 -0.43% 52,190,081 53,711,730 -2.83% 178,630,640 134,278,895 33.03% 147,870,807 121,184,411 22.02%

Average -2.95% -5.06% 31.01% 20.53%

5 Conclusion

This paper presents RANGER, a framework and architecture design for hierarchical
task scheduling in extremely heterogeneous computing. As a framework, one crucial
benefit of hierarchical scheduling is that it only requires coarse-grained task depen-
dency specifications at the top level, whereas more fine-grained, accelerator-specific
scheduling can be performed at the lower level. The coarse-grained task specifications
make it much easier to maintain programming portability and productivity in heteroge-
neous computing. Introducing localized low-level schedulers enables the deployment of
more sophisticated, accelerator-specific scheduling solutions to better utilize hardware
resources. From an architecture perspective, RANGER uses customized RISC-V cores
to mitigate the computational overhead of task scheduling. Through extensive experi-
mentation, we demonstrated that RANGER architecture achieves 12.7× performance
gains on average in terms of makespan with only a 2.7% area overhead in a 16 nm
technology.
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In future work, we plan to further improve the global and local schedulers in RANGER.
They also plan to integrate RANGER with contemporary parallel run-times to further
explore its potential.
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