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Abstract—This paper presents IRIS-BLAS, a novel hetero-
geneous and performance portable BLAS library.IRIS-BLAS
is built on top of the IRIS runtime and multiple vendor and
open-source BLAS libraries. It can transparently use all the
architectures/devices available in a heterogeneous system, using
the appropriate BLAS library based on the task mapping at
run time. Thus, IRIS-BLAS is portable across a broad spectrum
of architectures and BLAS libraries, alleviating the worry of
application developers about modifying the application source
code. Even though the emphasis is on portability, IRIS-BLAS
provides competitive or even better performance than other
state-of-the-art references. Moreover, IRIS-BLAS offers new
features such as efficiently using extremely heterogeneous systems
composed of multiple GPUs from different hardware vendors.

Index Terms—Performance Portable, Heterogeneity, IRIS,
BLAS, Tasking.

I. Introduction & Related Work
With the explosion of heterogeneity in current and future

computer systems, HPC math libraries are facing important
challenges [1]. Manually attempting to coordinate and schedule
data placement/computation, which types of processors to
select for certain calculations, and when computations will
occur is becoming an intractable problem due to the growing
complexity, diversity, and scale of HPC systems. Historically,
BLAS (Basic Linear Algebra Subprograms) vendors [2]–[4]
and open-source [5]–[7] libraries are only focused on one
architecture and/or programming model. Although we can
find some examples [8], [9] using both, CPU and GPU, for
some math kernels, they require programmers to decide which
device to use for each component of the problem or/and

computationally expensive pre-processing to identify which
device to use.

Task-based dynamic runtimes are positioned as part of
the solution to the challenges aforementioned [1]. Novel
developments are needed in software abstractions to increase
application portability using fully dynamic runtime systems to
schedule and control highly varied resources. However, existing
approaches rely mostly on static mapping/scheduling where
the programmer must decide which device to use for each
task, such as OpenMP tasking [10] or others [11]. Fortunately,
we can find two dynamic runtime systems; StarPU [12] and
IRIS [13]. The later provides a higher capacity and support
for a greater variety of devices and programming models 1. In
this work, we compare the performance of both systems.

The main motivation and objective of this work is to provide
a performance portable and heterogeneous BLAS library that
is able to use all kinds of architectures hosted by any computer
node, using a fully dynamic runtime system, and so, pursue
the maximum performance that we can get independently of
the complexity, diversity, and scale of the computer system to
use.

II. Background: IRIS
IRIS [13] is a programming system for extremely heteroge-

neous architectures. Figure 1 illustrates its architecture. IRIS
enables application developers to write portable applications
across diverse heterogeneous programming platforms including
CUDA, HIP, Level Zero, OpenCL, and OpenMP. It orchestrates

1https://iris-programming.readthedocs.io/en/latest/



multiple programming platforms in a system into a single
execution/programming environment by providing portable
tasks and shared virtual device memory.
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Fig. 1: The IRIS architecture

IRIS provides a task-based programming model. A task in
IRIS is a scheduling unit. A task runs on a single device,
and it is portable across any compute devices in the system,
including accelerators, such as AMD and NVIDIA GPUs,
FPGAs, among others. A task contains zero or more commands.
There are four types of commands: host-to-device memory
copy command, device-to-host memory copy command, kernel
launch command, and host command. A task can have a
dependency on other tasks. When a task depends on other tasks,
it cannot start until the prerequisite tasks complete. Therefore,
writing an IRIS application means to build directed acyclic
graphs of tasks. Each task has a target device selection policy
when it is submitted. The policy is specified by programmers,
and it can be a device number, type (CPU, GPU, FPGA, or
DSP), or builtin policies such as greedy, random, locality-aware,
and profile, provided by IRIS.

To achieve application portability and flexible task schedul-
ing with effective data orchestration, IRIS provides shared
virtual device memory across multiple, disjoint physical device
memories. IRIS automatically transfers data across multiple
devices to keep memory consistency across tasks. Therefore,
all compute devices can share memory objects in the shared
virtual device memory, and they can see the same content in
the memory objects.

Table I shows a feature comparison between IRIS and
StarPU [12] runtime. IRIS and StarPU share some striking
similarities; for example, tasks and kernels in the IRIS are
conceptually equivalent to the tasks and codelets in the StarPU.
Even though StarPU is one of the pioneers in the heterogeneous
runtime domain, IRIS supports a broader range of accelerators,
programming models, and BLAS libraries. However, StarPU
being more mature supports some extra features that IRIS does
not yet, such as CUDA streaming.

III. IRIS-BLAS
The overall IRIS-BLAS software stack is shown in Figure 2.

It is supported with OpenBLAS [7], Intel MKL [2], NVIDIA
cuBLAS [3], CLBlast [14] (Adreno, NVIDIA and AMD GPUs),

TABLE I: IRIS and StarPU comparison

Feature IRIS StarPU
CPU, GPUs (Nvidia & AMD), CPU, GPUs,

Architectures FPGAs (Intel & Xilinx), (Nvidia & AMD),
Qualcomm SoCs Xilinx FPGAs
OpenMP, CUDA, OpenMP,

Programming Models HIP, OpenCL, IntelCL, CUDA, HIP,
XilinxCL, HexagonC OpenCL

OpenBLAS, Intel MKL, OpenBLAS, Intel MKL,
BLAS Libraries ATLAS, cuBLAS, hipBLAS cuBLAS,

rocBLAS, CLBLAST ATLAS, GOTO
CUDA Streams Not supported Supported

AMD hipBLAS [15] vendor specific and open-source BLAS
libraries.

Application
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Fig. 2: IRIS-BLAS Software Stack

IRIS-BLAS is able to decide which device to use at run-time.
However, the BLAS library to use on each device must be
decided at compile time. For example, developers can decide
which CPU BLAS library to use (OpenBLAS, Intel MKL,
cBLAS) at compile time. IRIS-BLAS supported libraries and
architectures is shown in Figure 2.

A. IRIS-BLAS APIs
IRIS-BLAS provides developers two different APIs for each

BLAS operation:
1) High-level API (AI): High-level APIs are for the de-

velopers to call the IRIS-BLAS API in the place of
traditional OpenBLAS/MKL/cuBLAS/hipBLAS API, just
changing the name of the functions. It takes the same
host address space pointers for both input and output
parameters (matrices and arrays) similar to traditional
BLAS API. IRIS-BLAS API implementation takes care
of creating IRIS task, IRIS memory objects and IRIS
kernel. It also takes care of introducing host to device
and device to host data transfer commands in the IRIS
task. It simplifies the application programming to migrate
from compute specific BLAS operation to heterogeneous
BLAS operation with a simple name change of function.

2) Low-level API : This API is for advanced programming
developers whom want to share the IRIS memory objects
across different IRIS tasks to save the data transfers. It
provides developers full control on memory management



and task dependencies, so that the library can better inter-
operate with other IRIS tasks or applications/libraries. This
API implementation handles IRIS task kernel creation by
setting the appropriate parameters of the kernel. When
compared to high-level API, it takes IRIS task parameter
as an input to insert the task kernel.

For example, as shown in Figure 3, we provide the two
IRIS-BLAS APIs for SGEMM BLAS Level-3 routine. The only
difference between the two APIs is the function arguments.
The high-level API iris_core_sgemm requires only the host-
memory pointers. This is a blocking API, which takes care
of task creation/submission, tuning, memory management and
data transfers. This API also requires one additional parameter;
target_dev in Figure 3. This argument can be used to specify
which device to use (CPU, GPU, FPGA, etc.) or we can leave
the decision about which device to use to IRIS (using iris_all).
The other API, iris_task_sgemm is similar to the previous one
in the implementation, but provides more control to application
programmer on memory management, task dependencies, as
well as on task submission either directly or using task graph
data structure. In the case of the semi-control API, users have
to provide only IRIS memory handlers/objects in the place of
host pointers. Data transfers will be taken care by IRIS based
on the access of IRIS memory objects and task kernel execution
on the target device. This API doesn’t take target_dev as an
argument. Low-level APIs are necessary for programmer to
share the IRIS memory handlers between different tasks, and
so IRIS can optimize the data transfers between dependent
tasks based on the device mapping of tasks.

1 int iris_core_sgemm( int target_dev, IRISBlasType major,
2 IRISBlasType a_trans, IRISBlasType b_trans,
3 int M, int N, int K, float alpha,
4 float *A, int lda,
5 float *B, int ldb, float beta,
6 float *C, int ldc ) {
7 IRIS_SINGLE_TASK( task0, "iris_sgemm_kernel",
8 target_dev, 1,
9 NULL_OFFSET, GWS(M), NULL_LWS,

10 PARAM(IRISBlasType, major),
11 PARAM(IRISBlasType, a_trans), ...
12 IN_TASK(A, float*, float, A, sizeof(float)*M*N),
13 PARAM(int, lda), ...
14 IN_OUT_TASK(C, float*, float, C, sizeof(float)*M*K),
15 PARAM(int, ldc) );
16 return IRIS_SUCCESS;
17 }
18 int iris_task_sgemm( iris_task task0, IRISBlasType major,
19 IRISBlasType a_trans, IRISBlasType b_trans,
20 int M, int N, int K, float alpha,
21 iris_mem IRIS_VAR(A), int lda,
22 iris_mem IRIS_VAR(B), int ldb, float beta,
23 iris_mem IRIS_VAR(C), int ldc ) {
24 IRIS_TASK_NO_DT( task0, "iris_sgemm_kernel", 1,
25 NULL_OFFSET, GWS(M), NULL_LWS,
26 PARAM(IRISBlasType, major),
27 PARAM(IRISBlasType, a_trans), ...
28 IN_TASK(A, float*, float, A, sizeof(float)*M*N),
29 PARAM(int, lda), ...
30 IN_OUT_TASK(C, float*, float, C, sizeof(float)*M*K),
31 PARAM(int, ldc) );
32 return IRIS_SUCCESS;
33 }

Fig. 3: SGEMM IRIS-BLAS high-level (top) and low-level (bottom)
APIs.

Each API is implemented by using a set of IRIS macros,
which are used to easily convert any function call to IRIS tasks.
These macros (IRIS_SINGLE_TASK and IRIS_TASK_NO_DT
in Figure 3) are also used in the process of creating the host
wrapper codes (boiler plate code for IRIS task). As we see
later, these wrapper codes are necessary for the interoperability
between IRIS-BLAS API, kernel codes, vendor/open-source
BLAS libraries, and IRIS runtime. Other macros (IN_TASK,
OUT_TASK, and IN_OUT_TASK) are used to indicate the
memory parameters whether they are input or output or both
input/output, which needs to be fetched using IRIS commands
H2D (Host to Device), D2H (Device to Host) or both. Finally,
the PARAM macro are used for scalar parameters.

B. Core kernels
For example, the core CUDA kernel of SGEMM BLAS

routine is shown in Figure 4. IRIS-BLAS only requires core
kernel codes and the three application programming interface
codes to support one BLAS routine. This approach allows us
to create a truly heterogeneous BLAS library with support of
different vendor-specific and/or open-source BLAS libraries.
IRIS enables the library and compute unit to be selected at
run-time based on the task scheduler and device availability.

1 int iris_sgemm_kernel( int devno,
2 IRISBlasType major,
3 IRISBlasType a_trans, IRISBlasType b_trans,
4 int32_t M, int32_t N, int32_t K,
5 float alpha, CUdeviceptr A, int32_t lda,
6 CUdeviceptr B, int32_t ldb,
7 float beta, CUdeviceptr C, int32_t ldc ) {
8 cublasStatus_t status =
9 cublasSgemm( GetCUBlasHandle(devno),

10 GetCUBlasMap(b_trans),
GetCUBlasMap(a_trans),↪→

11 N, M, K,
12 &alpha, B, ldb,
13 A, lda,
14 &beta, C, ldc );
15 if (status != cudaSuccess) return IRIS_ERROR;
16 return IRIS_SUCCESS;
17 }

Fig. 4: cuBLAS SGEMM core kernel.

1 int iris_sgemm_kernel( int devno,
2 IRISBlasType major,
3 IRISBlasType a_trans, IRISBlasType b_trans,
4 int32_t M, int32_t N, int32_t K,
5 float alpha, float *A, int32_t lda,
6 float *B, int32_t ldb,
7 float beta, float *C, int32_t ldc ) {
8 cblas_sgemm(GetOpenBlasMap(major),
9 GetOpenBlasMap(a_trans), GetOpenBlasMap(b_trans),

10 M, N, K, alpha, A, lda, B, ldb, beta, C, ldc);
11 return IRIS_SUCCESS;
12 }

Fig. 5: OpenBLAS/MKL SGEMM core kernel.

C. A transparent and highly productivity BLAS
framework

The current IRIS framework have native run-time system
support for CUDA, HIP and OpenCL as shown in Figure 6.a.



It enables the programmer to provide kernels written directly in
CUDA/HIP/OpenCL and doesn’t require any wrapper. However,
the OpenMP kernels require wrapper codes to gather the kernel
parameters and pass them to OpenMP kernel function during
the execution. Note that StarPU framework requires wrappers
for CUDA, HIP, OpenCL and OpenMP codes.

Unlike the current IRIS framework, the use of vendor specific
and open-source libraries requires wrapper codes. IRIS runtime
is extended to call these wrapper codes as shown in Figure 6.b.
These wrappers are tedious to write manually. Hence, we
developed a wrapper code generator tool written in Python,
which can parse the IRIS task specification using macros and
generates the wrapper code during the compilation (as shown
in Figure 6.c). This enables the programmers to use both
IRIS-BLAS and native kernels written in CUDA/HIP/Open-
CL/OpenMP/etc., providing a fully inter-operable programming
environment. Also, IRIS-BLAS is scalable to any new BLAS
library by writing only new kernel cores (as shown in Figure 5).
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D. Application Interface

1 #include "irisblas.h"
2 int call_iris_blas_sgemm(int N) {
3 float *A = (float*) malloc(N*N*N*sizeof(float));
4 float *B = (float*) malloc(N*N*N*sizeof(float));
5 float *C = (float*) malloc(N*N*N*sizeof(float));
6 init_matrix(A, N); init_matrix(B, N);
7 iris_core_sgemm(iris_any, IRISBLAS_ROW_MAJOR,
8 IRISBLAS_NO_TRANS, IRISBLAS_NO_TRANS,
9 N, N, N, 1.0, A, N, B, N, 1.0, C, N);

10 print_matrix(A, N);
11 print_matrix(B, N);
12 print_matrix(C, N);
13 free(A); free(B); free(C);
14 return IRIS_SUCCESS;
15 }

Fig. 7: Example usage of IRIS BLAS Sgemm in application code

An example about how to use IRIS-BLAS SGEMM high
level API (iris_core_sgemm) for square matrices of size (N *
N) is shown in Figure 7. It uses the host memory addresses
for A, B, and C matrices. IRIS-BLAS is also supported with
Python wrappers. An example of using the python IRIS-BLAS

SGEMM API is shown in Figure 8. It uses numpy arrays for
inputs and outputs.

1 import irisblas
2 def call_iris_blas_sgemm():
3 x = np.array([[1.0, 2.0], [3.0, 4.0]], np.float)
4 y = np.array([[1.0, 2.0], [3.0, 4.0]], np.float)
5 z = np.array([[0.0, 0.0], [0.0, 0.0]], np.float)
6 irisblas = IRISBLAS()
7 irisblas.call(irisblas.iris_core_sgemm,
8 iris.iris_gpu,
9 irisblas.IRIS_BLAS_ROW_MAJOR,

10 irisblas.IRIS_BLAS_NO_TRANS,
11 irisblas.IRIS_BLAS_NO_TRANS,
12 x[0].size, y[0].size, y[1].size,
13 np.float(1.0), x, x[0].size,
14 y, y[0].size,
15 np.float(1.0), z, z[0].size)
16 print('x=',x)
17 print('y=',y)
18 print('z=',z)
19 irisblas.finalize()

Fig. 8: Python application with IRIS BLAS Sgemm call

E. Tiled GEMM Implementation
We have implemented a heterogeneous tiled GEMM code

in IRIS-BLAS. This code is able to effectively exploit all
the heterogeneous resources in the system and distribute the
workload/tasks using IRIS run-time scheduler. The use of the
task-based programming model implemented in IRIS enables
that the decision about which device to use is left to IRIS
run-time scheduler. This decisions are taken based on the
scheduling algorithm, resource availability and constraints.
Similar to the tiled GEMM operation in StarPU [16], the A
and B matrices are split into smaller 2-D tiles and the matrix
multiplication is carried out on these tiles. Each matrix tile
computation is considered as a IRIS task with H2D, Kernel
and D2H commands. The accumulation of these tiled matrix
multiplications require a column-sum operation to accumulate
the results. We implemented this kernel using native languages
such as CUDA, HIP, OpenCL and OpenMP. This effort
helps IRIS run-time for a better task/device mapping, and
optimize some of the H2D and D2H data transfers based on
the device/task mapping carried out. All these is completely
transparent to programmers.

IV. Experimental Results
Next, we analyze IRIS-BLAS in terms of performance

portability and heterogeneity support.

A. Performance Portability
We have used different CPU (Intel Xeon-Skylake, AMD 249

EPYC-7763 and Qualcomm Snapdragon) and GPU (Nvidia’s
A100, AMD’s MI100, and Qualcomm Snapdragon Adreno
GPUs) architectures. IRIS-BLAS is portable for all supported
libraries. As graphically illustrated in Figure 9, a single IRIS-
BLAS code/application (SGEMM application) can be run on
any architecture. Our library offloads any vendor or open-source
optimized BLAS kernels to the corresponding target hardware
at runtime. In this case, CLBlast can be offloaded to NVIDIA
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Fig. 9: IRIS-BLAS SGEMM performance on different CPU and GPU
architectures.

A100, AMD MI100 and Qualcomm Adreno GPUs, cuBLAS
to NVIDIA A100, MKL to Intel Xeon-Skylake, OpenBLAS
to Intel Xeon-Skylake, AMD EPYC-7763 and Qualcomm
Snapdragon, and hipBLAS to AMD MI100. Such flexibility
in terms of offloading opens the door for advanced scheduling
in contemporary and upcoming heterogeneous systems. For
this analysis, we have use the high-level SGEMM IRIS-BLAS
API. The total time includes the input and output data transfer
times along with kernel execution time (high-level API).

Although the objective of IRIS-BLAS is mainly portability,
we have measured the performance of IRIS-BLAS for SGEMM
operations on different architectures and BLAS libraries. For
instance, we can observe that hipBLAS on MI100 is very com-
petitive for big matrix size w.r.t. cuBLAS on A100, OpenBLAS
is better than the MKL library on Intel Xeon Skylake, and
OpenBLAS on ARM cores achieve better performance than
CLBlast on Adreno GPU.

B. StarPU vs IRIS
We have compared the tiled SGEMM implementation in

StarPU against our IRIS-BLAS implementation. As in the
previous analysis, the IRIS-BLAS implementation uses the high-
level SGEMM IRIS-BLAS API. Both codes, StarPU and IRIS-
BLAS, use the cuBLAS library and 4 NVIDIA A100 GPUs.
We have used different matrix size, with 8× 8 number of tiles.
As shown (Figure 10), although StarPU has support for CUDA
streaming, IRIS-BLAS is able to achieve better or at least
competitive performance w.r.t. StarPU implementation, due to
the IRIS optimized data transfers, which can avoid some of the
data transfers if the data is already in GPU device. As shown
the impact of CUDA streams used by StarPU is important
on big matrices. This allows to overlap communication with
computation, and get better performance than IRIS-BLAS.

C. Support for Extreme-Heterogeneous Systems
To the best of our knowledge, this is the first time that

different GPU architectures (4x NVIDIA GPUs and 4x AMD
GPUs) and one CPU architecture (1x AMD EPYC 7763 64-
core CPU) were used in a parallel and collaborative way (see
Figure 11), thanks to the capacity provided by IRIS-BLAS.
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Fig. 10: Comparison of IRIS-BLAS with StarPU-BLAS

Note, that StarPU doesn’t have this capacity, so we couldn’t
compare performance against such library. We used as test case,
our tiled SGEMM implementation on a matrix of size equal
to 16, 384 × 16, 384 with 8 × 8 count of tiles. We used the
IRIS dynamic task scheduling policy ANY, which assigns the
available resource using a first-come-first-serve basis. Though
there are some gaps in the trace illustrated in Figure 11, where
some of the computational resources are idle at some point, we
can see that all the computational units are being used most
of the time.

V. Conclusion & Future Work
We presented some initial results of IRIS-BLAS, a novel,

heterogeneous and portable BLAS library, implemented on
top of the task-based run-time IRIS. This library support
a large number of current HPC architectures, programming
models and BLAS libraries. Also, it can inter-operate with
other programming models or libraries in a simple manner.
IRIS-BLAS is scalable to other architecture and/or BLAS
library without much effort. In terms of performance, we are
competitive with other reference libraries, such as StarPU,
providing even better results. Finally, we were able to use an
extreme heterogeneity system in an efficient way.

These initial results and effort open the door to more
opportunities towards a better exploitation of current and future
heterogeneous systems. Also, we will continue working for
a better support on IRIS and IRIS-BLAS, including feature
such as streaming tasks. These new supports will not need any
change in IRIS-BLAS API, being this one of the advantages
of task-based programming model.
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