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Abstract—In keeping with the trend of heterogeneity in high-
performance computing, hardware manufacturers and vendors
are developing new architectures and associated software stacks
(e.g., libraries) to harness the best possible performance from
commonly used kernels (e.g., linear algebra kernels). However,
kernels tuned for one architecture are not portable to others.
Moreover, the coexistence of different architectures in a single
node makes orchestration difficult. To address these challenges,
we introduce LaRIS, a portable framework for LAPACK func-
tionalities. LaRIS ensures a separation between linear algebra
algorithms and vendor-library kernels by using the IRIS run
time and IRIS-BLAS library. Such abstraction at the algorithm
level makes the implementation completely agnostic to the vendor
library and architecture. LaRIS uses the IRIS run time to
dynamically select the vendor-library kernel and suitable pro-
cessor architecture at run time. Through LU factorization, we
demonstrate that LaRIS can fully utilize different heterogeneous
systems by launching and orchestrating different vendor-library
kernels without any change in the source code.

Index Terms—Portability; LAPACK; IRIS run time; LU fac-
torization; Tasking; Tiling; CPU; GPU

I. INTRODUCTION

Heterogeneous computing systems are the go-to solution
for increasing computational capability for common high-
performance computing (HPC) workloads. Although heteroge-
neous architectures are now ubiquitous in the pursuit of ever-
increasing computational power, they introduce challenges in
portability. In the heterogeneous computing paradigm, very
different architectures (e.g., CPUs + GPUs) not only coexist
in the same system but must also work together seamlessly
and efficiently to extract meaningful performance benefits over
a homogeneous (i.e., CPU-only) system. Moreover, the wide
range of software stacks offered by processor manufacturers,
including architecture-specific tuned libraries, adds to this
complexity. Therefore, application and library developers must
ensure the portability of their code on different architectures to
extract the best possible performance of modern heterogeneous
computing systems.

In most cases, the current software and technology stacks
lack the capability to ensure portability and support extreme
heterogeneity. Although we can find some solutions that target
portability [17] or heterogeneity [11], it is difficult to find
a solution that targets both. IRIS [4], [14] is one of the
few solutions with such capacity. IRIS is a task-based run
time designed to orchestrate complex directed acyclic graphs
(DAGs) on heterogeneous systems. However, such a solution
for LAPACK (Linear Algebra PACKage) functionality is un-

common. There are run time systems [2] that provide some
functionalities but lack support for diverse heterogeneity for
LAPACK codes and have architecture-dependent implementa-
tions that limit the development of tiled LAPACK algorithms.

To mitigate these challenges, we present our ongoing efforts
to implement LaRIS, a novel LAPACK library on top of IRIS.
LaRIS is a fully architecture-agnostic and portable LAPACK
library for scientific applications and strives to utilize the full
computational capacity of current and future heterogeneous
systems through its automatic tiling and orchestration capabili-
ties. Using tiled LU factorization as a test case, we demonstrate
that LaRIS is portable to different heterogeneous systems
without any changes in the source code. Moreover, it can
utilize all the processing components by launching ≈90,000
tuned kernel tasks from different vendor-provided/open-source
BLAS (Basic Linear Algebra Subprograms) libraries.

This research reports the following contributions:

• Improved portability and productivity for LAPACK codes
by separating the algorithm description (application de-
tails) from the implementation, tasks mapping (hardware
features), and vendor library kernels.

• Efficient utilization of different heterogeneous systems
with a large number of computing components without
changing one line of code.

• Performance study of the LaRIS implementation for LU
factorization on three different heterogeneous systems:
one NVIDIA DGX-1 system with 1× Intel CPU and
4× NVIDIA V100 GPUs; one representative node of
the fastest TOP5001 supercomputer today, Oak Ridge
National Laboratory’s (ORNL’s) Frontier, with 1× AMD
CPU and 4× AMD MI250X GPUs; and one extreme
heterogeneous system with 1× AMD CPU and 8× GPUs
(4× NVIDIA V100 GPUs + 4× AMD MI100 GPUs).

The rest of the paper is organized as follows: Section II
summarizes important contributions from the literature. Sec-
tion III describes the different components used (IRIS and
IRIS-BLAS) in this work and the algorithm used for the
implementation. The details about the implementation are
presented in Section V, and the performance study is described
in Section VII. Finally, we conclude the paper with final
remarks and future directions in Section VIII.

1https://www.top500.org/



II. RELATED WORK

Recently, we have seen important progress toward perfor-
mance portability. Some examples include the C++ template
metaprogramming libraries Kokkos [17] and RAJA [3]. These
libraries can build different binaries that target different ar-
chitectures from one source code. However, they cannot use
more than one architecture at a time.

Using CPUs and GPUs for HPC has been widely stud-
ied [21], [22], [27]. Since OpenMP 4.0, it is possible to use
GPU offloading in OpenMP codes. Valero-Lara et al. [23]
used OpenMP 4.5 to implement a heterogeneous version of the
TRSM level-3 BLAS routine and achieved good performance
on one node of ORNL’s Summit supercomputer.

Most vendor or open-source math libraries are optimized
for just one architecture. One example is PLASMA (Parallel
Linear Algebra Software for Multicore Architectures) [9],
which is a reference library for dense linear algebra. Based on
OpenMP, PLASMA parallelizes BLAS2 and LAPACK3 level
operations that target homogeneous multicore and multisocket
CPU platforms. Like other libraries, such as Chameleon4

and LASs [6], [18]–[20], PLASMA uses tiled algorithms to
distribute the workload among the cores in the platform by
using task-based programming. Other relevant linear algebra
libraries that implement dense, sparse, or both types of linear
algebra operations include libFLAME [12], Intel MKL, and
OpenBLAS [28]. Another example in the linear algebra field
is ATLAS [29], which is a software package that provides
a complete BLAS collection of kernels and a subset of
LAPACK operations that deliver high performance thanks to
its autotuning approach. ATLAS exploits low-level features
such as the size of the different memory hierarchy levels
to customize required parameters (e.g., the block size) and
consequently makes better use of the resources to improve
performance on multicore CPU architectures.

Other approaches try to adapt the number of computations
to the resources available on the platform; however, the
adaptation is not done automatically, or its implementation
requires major changes in the code [5], [8], [26]. In the
first work, a batched GEMM (level-3 BLAS matrix-matrix
multiplication) is proposed to ensure better resource utilization
of the platform. The idea is that a GEMM is decomposed
into batches that contain thousands of smaller, independent
GEMMs to maximize the system’s use. In the second work,
a similar idea is proposed in which the authors vary the
number of operations per batch to balance the workload among
the batches. Finally, in the last work, the authors focus on
malleability to assign the appropriate amount of resources in
each stage of an LU decomposition. It also presents a strategy
(early termination) that automatically tunes the block size used
in the factorization when the workload between the panel
factorization and the update tasks is unbalanced.

2http://www.netlib.org/blas
3http://www.netlib.org/lapack
4https://project.inria.fr/chameleon/
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Figure 1: IRIS run-time system for heterogeneous architec-
tures [4], [14].

Another example is MAGMA (Matrix Algebra on GPU
and Multicore Architectures) [11], which is an open-source
math library for BLAS and LAPACK operations on hetero-
geneous systems. It includes some heterogeneous implemen-
tations based on tiled algorithms that use NVIDIA’s cuBLAS
and AMD’s hipBLAS math libraries. These implementations
statically run the LAPACK operations of the tiled algorithms
on the CPU, while most of the BLAS operations are run on
one GPU. Although some multiGPU implementations can be
found, MAGMA focuses on either a single GPU (BLAS) or
one CPU and one GPU (LAPACK).

StarPU is a task-based framework for hybrid architectures.
It offers a unified offloadable task abstraction named codelets,
in which programmers can encapsulate existing functions or
provide one function for each architecture. StarPU supports
OpenMP, OpenCL, and CUDA programming languages for
these codelets. HIP support was recently added, and its use
is limited to increments of variable and reduction operations.
StarPU and IRIS are both task programming models for hybrid
architectures. Although StarPU is one of the pioneers of
heterogeneous run times, IRIS supports a broader range of
accelerators, programming models, and BLAS libraries (e.g.,
hipBLAS).

All of the examples referenced above make improvements
in specific scenarios. However, they also exhibit at least one
of three drawbacks: (1) the tuning is not applicable for all
the input cases, (2) the solution is not easily implemented,
and/or (3) portability is not automatically achieved. In contrast,
this work presents an automatic, portable, and productive
solution for LAPACK codes on extremely heterogeneous sys-
tems. Additionally, performance results show that adapting the
behavior of the codes/algorithms at each hardware component
(including a high number of GPU accelerators) to attain high
performance is possible.

III. BACKGROUND

A. IRIS Run Time

As a programming system for extremely heterogeneous
architectures, IRIS [4], [14] enables application developers
to write portable applications across diverse heterogeneous
programming platforms, including CUDA, HIP, Level Zero,
OpenCL, and OpenMP (Fig. 1). IRIS orchestrates multiple

http://www.netlib.org/blas
http://www.netlib.org/lapack
https://project.inria.fr/chameleon/


Figure 2: Tiled LU decomposition scheme [20].

programming platforms into a single execution/programming
environment by providing portable tasks and shared virtual
device memory.

IRIS provides a task-based programming model in which a
task is a scheduling unit. This task runs on a single device
but is portable across any processing element in a given
system. A task can contain zero or more commands, and
there are four types of commands: (1) host-to-device memory
copy, (2) device-to-host memory copy, (3) kernel launch, and
(4) host. Because a task can depend on other tasks, it cannot
start until its prerequisite tasks are executed. Therefore, writing
an IRIS application means building DAGs of tasks. Each task
has a target device selection policy when it is submitted.
The programmer specifies the policy, which can be a device
number, device type (e.g., CPU, GPU, field-programmable
array [FPGA], digital signal processor [DSP]), or a built-in
policy provided by IRIS (e.g., greedy, random, locality-aware,
profile).

IRIS provides shared virtual device memory across multiple,
disjointed physical device memories to achieve application
portability and flexible task scheduling with effective data
orchestration. IRIS automatically transfers data across multiple
devices to keep memory consistency across tasks. Therefore,
all compute devices can share memory objects in the shared
virtual device memory and see the same content in the memory
objects.

B. Tiled LU Factorization

Decomposing a matrix A into lower and upper triangular
matrices (i.e., the LU factorization) is used to easily solve
systems of linear equations:

Ax = LUx = B. (1)

LU factorization plays a key role in many computational
science applications and is computationally expensive. There-
fore, an LU factorization implementation on top of the IRIS
programming model has the potential to facilitate performance
portability on different modern heterogeneous systems, which
is a goal of this research. Decomposing a matrix into tiles
is a common strategy to parallelize this operation. Defining
kernels, memory tiles, and dependencies by using task-level
programming, such an implementation is possible [10], [19],
[20].

The LU factorization on a tiled matrix (Fig. 2) consists
of (1) factorizing the first tile of the diagonal to obtain
the L (dark-green) and U (light-green) matrices of the tile;
(2) computing several TRSMs (light-blue) by using the L
matrix for the corresponding row and the U matrix for the
corresponding column; and (3) computing the so-called update
step (dark-blue) by multiplying (i.e., GEMM) the result of the
set of TRSMs and updating the tiles in the rest of the matrix.
We compute the next tile of the diagonal and the next two
steps until the entire matrix is computed.

Although the state-of-the-art routine for LU factorization in-
volves pivoting, we considered a non-pivoting version for two
reasons: (1) the pivoting is not necessary on well-conditioned
matrices, and (2) we want to analyze the performance of the
proposed optimizations without the influence of pivoting for
performance analysis. Additionally, although using pivoting
to solve systems of linear equations is commonly accepted,
we found multiple problems in which the matrices were
well conditioned, which made expensive operations such as
pivoting unnecessary. For this reason, multiple implemen-
tations in reference libraries do not use such a technique.
Examples include PLASMA [10], LASs [20], Intel’s MKL,
NVIDIA’s cuSolver [24] and cuSparse [25], FISHPACK [27],
and SuperLU [7].

C. IRIS-BLAS

Still under development, IRIS-BLAS [15] is a novel,
performance-portable BLAS library intended to address the
portability challenges of BLAS for different heterogeneous
architectures. IRIS-BLAS is built on top of the IRIS run time
and multiple vendor and open-source BLAS libraries. IRIS-
BLAS supports OpenBLAS [30], Intel MKL [13], NVIDIA
cuBLAS [16], and AMD hipBLAS [1]. In a heterogeneous
system, IRIS-BLAS offloads the appropriate BLAS library
kernel based on the task mapping at run time. Thus, IRIS-
BLAS is portable across a broad spectrum of architectures and
BLAS libraries, thereby alleviating the worry of modifying
the application source code. The effectiveness of IRIS-BLAS
has been demonstrated on different CPUs (e.g., Intel Xeon
Skylake, AMD 249 EPYC 7763, and Qualcomm Snapdragon
ARM cores) and GPUs (e.g,. NVIDIA A100, AMD MI100,
and Qualcomm Snapdragon Adreno). Although its objective
is portability, IRIS-BLAS also provides competitive or even
better performance compared with other state-of-the-art ref-
erence libraries [2]. By providing a vendor library kernel at
run time, IRIS-BLAS provides an important building block for
implementing complex linear algebra algorithms, and this is
the main focus of this work, as discussed in the next section.

IV. LARIS: DESIGN AND OBJECTIVES

LaRIS (an LAPACK library on the IRIS run time) is
designed with three goals in mind: (1) simplify performance
portability of LAPACK code on heterogeneous systems, (2)
exploit the computational capabilities of heterogeneous sys-
tems to the fullest by using automatic tiled algorithms, and
(3) facilitate the inclusion of algorithm-specific performance



Figure 3: Software stack and design of LaRIS.

models to guide scheduling in heterogeneous systems. The
LaRIS software stack is shown in Fig. 3.

A. Enabling Portability

To make LaRIS portable, we separated the algorithm design
from the tuning. Algorithm design involves expressing the tiled
LAPACK algorithms by using tasks and their dependencies,
and tuning consists of choosing the target kernels and proces-
sors for executing each of the tasks. Two levels of abstractions
facilitated by the IRIS run time and the IRIS-BLAS library
enable such a separation (Fig. 3). Tiled LAPACK algorithms
are expressed by using type-less LaRIS APIs along with the
IRIS run time and the IRIS-BLAS APIs that do not include any
architecture- or vendor-library specific detail (see Listings 2
and 3 in Appendix I). Therefore, LaRIS codes are completely
agnostic of the architecture and vendor library at compile time.
This feature facilitates the implementation of different tiled
algorithms for LAPACK codes without having to worry about
vendor libraries or the underlying hardware.

Tuning occurs at run time. By using dynamically linked
libraries of IRIS and IRIS-BLAS at run time, LaRIS tasks are
scheduled on different processors in a heterogeneous system
on which vendor-specific kernels suitable for those processors
are executed. IRIS’s run time scheduler enables the full
orchestrations during which IRIS-BLAS dynamically provides
the vendor-specific tuned kernels. Thus, the tuning phase does
not require code modifications at the algorithm level, but they
are conducted internally and transparently by IRIS for each
task. Leveraging IRIS’s dynamic scheduler, the set of tasks in a
LaRIS algorithm attempts to obtain the maximum performance
on the target architecture by maximizing the use of all the
computational resources available in a heterogeneous system.

B. Tiled Execution

When processing larger matrix sizes, tiling is required to
utilize all the processors in a heterogeneous system. LaRIS
provides APIs for automatic tiling and reconstructing. Tiling
occurs before task and dependency creation. While creating
the graph, LaRIS associates memory chunks for different tiles
to different tasks.

C. Current Status

LaRIS is under development along with IRIS-BLAS to sup-
port more LAPACK and BLAS-level functionalities. Although
performance model–guided scheduling is in progress, the
current implementation has enough support to make LAPACK
codes portable for tiled execution. The following sections
demonstrate one such capability with tiled LU factorization
as a test case.

V. TILED LU IMPLEMENTATION IN LARIS

This section discusses the LU factorization algorithm imple-
mented in LaRIS. LaRIS decomposes a matrix into a set of
square tiles (Fig. 2). Based on the provided tile configuration
at the LaRIS level, the algorithm decomposes the problem by
using different memory spaces, tasks, and dependencies. The
pseudocode of the type-less LU factorization implementation
in LaRIS can be found in Listing 2 in Appendix I.

A. Tasks

The implementation of LU factorization in LaRIS consists
of four different tasks:
(1) GETRF, in which LaRIS computes a no-pivoting LU

factorization on the diagonal tile of the matrix.
(2) TRSM-top, in which LaRIS computes the level-3 BLAS

TRSM routine by using the lower side of the LU factor-
ization computed in the previous task as the input matrix
and a set of tiles located at the right of the LU matrix
as the output matrices. One task per tile is created for
computation.

(3) TRSM-left, in which LaRIS computes the same level-3
BLAS operation used in the previous tasks; however, it
computes a different part of the matrix where the input
is the upper side of the LU matrix processed by the first
task (GETRF) and outputs a set of square tiles located
under the lower side of the LU matrix.

(4) GEMM, in which LaRIS computes a set of matrix-matrix
multiplications by using the output of the two previous
tasks (TRSM-top and TRSM-left) as input and the tiles
that correspond to the remaining matrix parts as output.
LaRIS computes all the previous tasks until the entire
matrix is computed (Fig. 2).

B. Automated DAG Creation and Scheduling

After tiling the memory, LaRIS creates a DAG that contains
the number of tasks and the dependencies between these tasks.
Because the execution environment is dynamic, incorrect
dependencies lead to inaccurate results. In LU factorization,
parallelization is possible between the tasks from different
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Figure 4: DAG of an 8 × 8 LU factorization that creates 204 tasks and their dependencies. Red ellipses are GETRF, orange
ellipses are TRSM, and blue ellipses are GEMM.

iterations. Therefore, LaRIS follows data dependency instead
of task dependency, where a dependency between two tasks
is created if and only if the output memory of one task is an
input memory of another.

Once the graph is created, LaRIS starts the execution by
using iris_graph_submit. For the sake of completeness,
Fig. 4 shows the DAG created by LaRIS LU code for a
tile configuration (i.e., matrix decomposition) of 8 × 8 for a
matrix of size 16, 384 × 16, 384. LaRIS is currently capable
of computing the correct result of the LU factorization by
decomposing a matrix with a tile configuration of up to
64×64, which creates 89, 440 kernel tasks. After the graph is
submitted, the IRIS run time reads the task graph and submits
them to the task queue. IRIS’s dynamic task scheduling policy
takes the tasks from the queue, chooses a target processor
based on the policy, and submits the task to the device-specific
task pool for execution.

C. Ensuring Utilization and Portability

As described in Section IV, one of LaRIS’s main goals
is to maximize the utilization of all available computational
resources. To do that, apart from carrying out the matrix
decomposition illustrated in Fig. 2, we use tuned multithreaded
kernels (on CPU and GPUs) to exploit the parallelism at
both algorithm and task levels. LaRIS leverages the dynamic
scheduling policy from the IRIS run time to use all the

available computational resources in a heterogeneous system.
For example, the iris_any dynamic scheduler assigns each
task to a CPU or GPU device depending on its availability at
run time. Hence, the task execution is completely decoupled
from the programming, and its IRIS run time’s job is to care
for it. The application’s performance depends on the number
of tasks (i.e., tiles), computational cost of each operation
(GETRF/TRSM, GEMM), the type of underlying computing
resources, and their count.

Portability is ensured by associating each task in the
graph with one generic LAPACK or BLAS API from
IRIS-BLAS. The parameters of these routines are similar
to the specification of standard math libraries (i.e., LA-
PACK, BLAS). Hence, dynamic loading of the appropriate
vendor-library kernel becomes possible. For example, LaRIS’s
double-precision GETRF routine is dynamically linked to the
LAPACKE_mkl_dgetrfnpi kernel of the MKL library if
a CPU is chosen by the IRIS dynamic scheduler to execute
the task. If the IRIS scheduler chooses an AMD GPU, then
hipblasDgetrf from hipBLAS is executed. Therefore,
tasks of the DAG shown in Fig. 4 can execute on any available
processor by launching the tuned kernel for that architecture.
Relying on this dynamic selection capability, the same LaRIS
code can be ported to a different set of computing resources
without even changing a line in the code.



Table I: Heterogeneous systems used in this research

Nodes NVIDIA DGX-1 Frontier-like node CADES node
Facility ExCL at ORNL Crusher (early access) at ORNL CADES at ORNL

Total 4 GPUs Total 8 GPUs Total 8 GPUs
GPUs 4× NVIDIA V100 4× AMD MI250X 4× NVIDIA A100

(each contains two) 4× AMD MI100
CPU Intel Xeon E5-2698, 20 cores AMD EPYC 7A53, 64 cores AMD EPYC 7763, 128 cores

Compiler GNU-9.4.0 GNU-8.5.0 GNU-8.5.0
CUDA and ROCm versions CUDA-11.7 CUDA-11.7 and ROCm-5.1.0 CUDA-11.7 and ROCm-5.1.2

Math libraries for GPUs cuBLAS and cuSOLVER hipBLAS cuBLAS, cuSOLVER and hipBLAS
Math libraries OpenBLAS-0.3.20 and OpenBLAS-0.3.17 and OpenBLAS-0.3.20 and

for CPU MKL-2022.1.0 MKL-2020.4.304 MKL-2020.4.304

VI. EXPERIMENTAL SETUP

For this work, we used three heterogeneous systems with
CPUs and GPUs from different manufacturers located in
different computing facilities at ORNL. Table I shows the
hardware configurations, architectures, compilers, software
stacks, and BLAS libraries that were used. For profiling and
tracing, the native capabilities of the IRIS run time were
used. Execution times reported in Section VII are for the
graph execution without the time spent for the initial memory
allocation on the host side for matrix creation.

Experiments were conducted with tile configurations of [4×
4, 8×8, 16×16, 32×32, and 64×64], which resulted in [30,
204, 1, 496, 11, 440, and 89, 440] tasks (kernels) to compute
the final result. Double precision was used for all experiments.
Experiments were run five times, and an average was reported.

VII. EXPERIMENTS

We evaluated the efficacy of LaRIS’s LU factorization in
four steps. First, LaRIS’s portability is explored. Then, strong
scaling performance for an increasing number of GPUs is
evaluated, followed by a discussion of the trade-off between
parallelism and overhead. Finally, the optimization opportuni-
ties are identified.

A. Portability to Different Heterogeneous Devices

Two aspects are evaluated in this experiment: portabil-
ity and system utilization. For this experiment, we used a
16, 384×16, 384 matrix with a tile decomposition of 32×32,
which created 11, 440 kernel tasks. Because one of the main
objectives of LaRIS is to provide a portable solution for
LAPACK codes, no architecture- or vendor-specific library
changes were made in the LU factorization code while de-
ploying and experimenting on the three heterogeneous systems
mentioned in Table I. Once the graph was submitted to the
IRIS run time, seamless execution was observed in these
systems (Fig. 5). The IRIS run time was able to select
appropriate vendor-specific BLAS kernels to schedule on the
corresponding processors and orchestrate the correct result
for the LU factorization. Because the IRIS_any scheduling
policy was used, no binding was imposed between the kernel
types, BLAS kernel, or target processors. Therefore, IRIS had
complete freedom to run any kernel on any device to maximize
the parallelization opportunities.

Traces for these executions are shown in Fig. 5. Figures 5a
and 5b show the execution timeline on one CPU and on multi-
ple GPUs from NVIDIA and AMD, respectively. Notably, the
CPU bar represents all available cores. Figure 5c shows the
most interesting case in which one AMD CPU, four NVIDIA
A100 GPUs, and four AMD MI100 GPUs processed the entire
graph. The complete separation of the LAPACK code from
the BLAS libraries and the architecture made this seamless
portability possible.

Three traces in Fig. 5 also demonstrate system utilization by
depicting 11, 440 task kernels in different colors. Conceptually,
these traces can be considered a counter-clockwise, 90◦ rota-
tion of Fig. 4 when using multiple processors. White spaces
indicate idle time and are barely noticeable in all these three
traces, except at the end of the timeline. As shown in Fig. 4,
parallelization reduces at the end of the LU factorization
algorithm, which is why there are some white spaces at the
very end. However, the main takeaway in terms of utilization
is that when the algorithm exposed parallelism, LaRIS was
able to utilize the parallelism by exploiting the computational
power of all the available resources.

B. Strong Scaling in a MultiGPU Environment

Strong scaling capability is evaluated in this experiment.
The matrix size and tile configuration were kept the same
as the number of GPUs used in the systems (Table I) was
increased. A 16 × 16 tile configuration was used for all the
experiments. A matrix size of 16, 384 × 16, 384 was used
for the DGX-1 machine, and 32, 768 × 32, 768 was used for
Crusher and the CADES node. The number of GPUs was
increased to observe the change in execution time, which is
presented in Fig. 6. The DGX-1 machine showed a perfor-
mance improvement with each addition of an NVIDIA V100
GPU for processing LU factorization (Fig. 6b).

Scalability for the Crusher node is shown in Fig. 6c, and
performance improvements were observed when adding up to
four AMD MI250X GPUs. However, increasing the number
of GPUs beyond four made the performance worse.

Scalability on the CADES machine showed a waterfall trend
(Fig. 6a). When the number of NVIDIA A100 GPUs was
increased, the performance improvement was saturated when
using four GPUs. However, the performance improvement kept
resurfacing when AMD MI100 GPUs were added and reached
a saturation point when four NVIDIA and four AMD GPUs
were used.



(a) Trace from NVIDIA DGX-1.

(b) Trace from Crusher node.

(c) Trace from CADES node.

Figure 5: Evaluating portability and exploiting parallelism in GPUs and CPUs from multiple vendors. Traces are generated
for a 16, 384 × 16, 384 matrix with a tile decomposition of 32 × 32, which created 11, 440 tasks. Red is GETRF, orange is
TRSM, and blue is GEMM. The horizontal axis shows the timeline only for graph execution in seconds, whereas the vertical
axis shows different CPUs and GPUs.

The saturation shown in Figs. 6c and 6a can be correlated
to the overhead of multidevice tasking, which induces an
increased number of memory transfers. With an increasing
number of GPUs, the probability that the data needed by the
tasks is not located in the device increases; hence, it can cause
extra memory transfers. We are working toward better and
more efficient memory management for such scenarios.

C. Best Tile Configuration: a Trade-off between Parallelism
and Overhead

This experiment delves into finding the best tile config-
urations for a given matrix size in a node. Large matrices
were processed by using different tile configuration launch-
task kernels that ranged in number from 30 (for 4 × 4) to
89, 440 (for 64×64) kernel tasks (Fig. 7). For this experiment,
all the processing units were used. Some matrix and tile

Table II: Best tile configuration for different matrix sizes

Matrix DGX-1 Crusher node CADES node
8, 192× 8, 192 8× 8 4× 4 4× 4

16, 384× 16, 384 8× 8 8× 8 8× 8
32, 768× 32, 768 8× 8 16× 16 16× 16
65, 536× 65, 536 NA 16× 16 16× 16

configurations are not shown because the available memory
in the existing devices did not allow all configurations.

The main observation from Fig. 7 is that the best tile
configuration for different matrices varies from node to node
because of the underlying hardware capacity. Table II presents
a summary of findings shown in Fig. 7 by showing the best
tile configurations for different matrix sizes on different nodes.
Only the 16, 384 × 16, 384 matrix has the same best tile
configuration on all nodes. Moreover, the larger matrices prefer
larger tiles on machines with more processing units. Such a
preference is the byproduct of a node having more processing



(a) NVIDIA DGX-1 with four V100 GPUs. (b) Crusher node with eight MI250X GPUs. (c) CADES node with four NVIDIA A100 GPUs and
four AMD MI100 GPUs.

Figure 6: Strong scaling on different machines.

elements that can leverage the extra parallelism generated by
the large tile configurations. However, no matrix performed the
best for the configurations 32× 32 and 64× 64. We correlate
such outcomes with the inclusion of host-to-device and device-
to-host memory transfer for each task. Thus, a larger number
of tasks in a larger number of processors incur more memory
transfer overhead. Adding memory transfers is not required for
every task because the parent task might have already brought
the data to the device. We plan to optimize such data transfers
in the future.

D. Opportunities

We have identified two opportunities from these experi-
ments. First, we see that the best execution time does not
depend on using the maximum number of available processors
or the highest number of tiles. Every matrix configuration
and node has a sweet spot for a particular tile and number
of processors. Generating performance models to guide the
scheduler to that desired tile and processor combination is a
research opportunity. The second opportunity arises from the
memory transfer inefficiency discussed in Section VII-C.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented LaRIS, a portable solution
that enables LAPACK codes on all processing elements in
a heterogeneous system by using tiled LAPACK algorithms.

Using the IRIS run time and the IRIS-BLAS library, LaRIS
decouples LAPACK algorithms from the architectures and
architecture-specific tuned BLAS libraries. Moreover, LaRIS
offers automatic tilling and can dynamically link to the cor-
responding vendor-provided BLAS kernel at run time, which
enables LaRIS to be portable and capable of using all the
processors in different heterogeneous systems. By launching
≈ 90, 000 BLAS kernels for LU factorization, LaRIS demon-
strated its ability to be portable to different heterogeneous
systems, including a representative node of the first exascale
supercomputer, ORNL’s Frontier, and showed its capability to
utilize all the processors simultaneously to compute correct
results. Some optimization opportunities (e.g., memory opti-
mization) were also identified through experimentation. We
plan to work on those optimizations and include performance
model–guided scheduling in the future.
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[17] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Q. Dang,
N. D. Ellingwood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez,
N. Liber, J. Madsen, J. Miles, D. Poliakoff, A. Powell, S. Rajamanickam,
M. Simberg, D. Sunderland, B. Turcksin, and J. Wilke. Kokkos 3:

Programming model extensions for the exascale era. IEEE Trans.
Parallel Distributed Syst., 33(4):805–817, 2022.

[18] P. Valero-Lara, D. Andrade, R. Sirvent, J. Labarta, B. B. Fraguela, and
R. Doallo. A fast solver for large tridiagonal systems on multi-core
processors (lass library). IEEE Access, 7:23365–23378, 2019.

[19] P. Valero-Lara, S. Catalán, X. Martorell, and J. Labarta. BLAS-
3 optimized by ompss regions (lass library). In 27th Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing, PDP 2019, Pavia, Italy, February 13-15, 2019, pages 25–
32. IEEE, 2019.

[20] P. Valero-Lara, S. Catalán, X. Martorell, T. Usui, and J. Labarta. slass:
A fully automatic auto-tuned linear algebra library based on openmp
extensions implemented in ompss (lass library). J. Parallel Distributed
Comput., 138:153–171, 2020.

[21] P. Valero-Lara, F. D. Igual, M. Prieto-Matı́as, A. Pinelli, and J. Favier.
Accelerating fluid-solid simulations (lattice-boltzmann & immersed-
boundary) on heterogeneous architectures. J. Comput. Sci., 10:249–261,
2015.

[22] P. Valero-Lara and J. Jansson. Heterogeneous CPU+GPU approaches for
mesh refinement over lattice-boltzmann simulations. Concurr. Comput.
Pract. Exp., 29(7), 2017.

[23] P. Valero-Lara, J. Kim, O. Hernandez, and J. S. Vetter. Openmp
target task: Tasking and target offloading on heterogeneous systems.
In R. Chaves, D. B. Heras, A. Ilic, D. Unat, R. M. Badia, A. Bracciali,
P. Diehl, A. Dubey, O. Sangyoon, S. L. Scott, and L. Ricci, editors, Euro-
Par 2021: Parallel Processing Workshops - Euro-Par 2021 International
Workshops, Lisbon, Portugal, August 30-31, 2021, Revised Selected
Papers, volume 13098 of Lecture Notes in Computer Science, pages
445–455. Springer, 2021.

[24] P. Valero-Lara, I. Martı́nez-Perez, R. Sirvent, X. Martorell, and A. J.
Peña. NVIDIA gpus scalability to solve multiple (batch) tridiagonal
systems implementation of cuThomasBatch. In Parallel Processing
and Applied Mathematics - 12th International Conference, PPAM 2017,
Lublin, Poland, September 10-13, 2017, Revised Selected Papers, Part
I, pages 243–253, 2017.
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APPENDIX I
This section provides pseudocodes for LaRIS’s tiled LU factorization and GEMM

operation.

1 // Creation of the IRIS graph
2 iris_graph graph; iris_graph_create(&graph);
3 iris_task getrf_tasks[TILE_NUM*TILE_NUM],
4 trsm_tasks[TILE_NUM*TILE_NUM],
5 gemm_tasks[TILE_NUM*TILE_NUM*TILE_NUM];
6 // Tiled LU factorization
7 for ( int step = 0; step < TILE_NUM; step++ ) {
8 // GETRF tasks
9 iris_task_create(

10 &getrf_tasks[(step*TILE_NUM)+step]);
11 // Dependencies for getrf tasks
12 if ( step > 0 ){



13 iris_task getrf_depend_tasks[] =
14 { gemm_tasks[((step-1)*TILE_NUM*TILE_NUM)+
15 ((step*TILE_NUM)+step)] };
16 iris_task_depend( getrf_tasks[(step*TILE_NUM) +
17 step], 1, getrf_depend_tasks );
18 }
19 // Encapsulate GETRF tasks into the graph
20 laris_getrf_graph( graph,
21 getrf_tasks[(step*TILE_NUM)+step],
22 step, step, step, TILE_SIZE, TILE_SIZE,
23 IRIS_Ctile[step*TILE_NUM+step],
24 A_tile[step][step], TILE_SIZE );
25 for ( int tile_jj = 1 + step; tile_jj < TILE_NUM;
26 tile_jj++ ) {
27 // trsm tasks
28 iris_task_create( &trsm_tasks[(step*TILE_NUM)+

tile_jj] );
29 // Dependencies for trsm tasks
30 if ( step == 0 ) {
31 iris_task trsm_depend_tasks[] =
32 { getrf_tasks[ ( step * TILE_NUM ) + step ]

};
33 iris_task_depend( trsm_tasks[(step*TILE_NUM) +
34 tile_jj], 1, trsm_depend_tasks );
35 } else {
36 iris_task trsm_depend_tasks[] = {
37 getrf_tasks[(step*TILE_NUM)+step],
38 gemm_tasks[((step-1)*TILE_NUM*TILE_NUM)
39 +(step*TILE_NUM)+tile_jj]};
40 iris_task_depend( trsm_tasks[(step*TILE_NUM)

+
41 tile_jj], 2, trsm_depend_tasks );
42 }
43 // Encapsulate trsm tasks into the graph
44 laris_trsm_top_graph( graph, trsm_tasks[(step*

TILE_NUM)+
45 tile_jj], step, step, tile_jj,
46 TILE_SIZE, TILE_SIZE,
47 IRIS_Ctile[step*TILE_NUM+step],
48 A_tile[step][step], TILE_SIZE,
49 IRIS_Ctile[step*TILE_NUM+tile_jj],
50 A_tile[step][tile_jj], TILE_SIZE );
51 }
52 for ( int tile_ii = 1 + step; tile_ii < TILE_NUM;
53 tile_ii++ ) {
54 // trsm tasks
55 iris_task_create(
56 &trsm_tasks[(tile_ii*TILE_NUM)+step] );
57 // Dependencies for trsm tasks
58 if ( step == 0 ) {
59 iris_task trsm_depend_tasks[] = {
60 getrf_tasks[ ( step * TILE_NUM ) + step ]};
61 iris_task_depend( trsm_tasks[ ( tile_ii *
62 TILE_NUM ) + step ], 1, trsm_depend_tasks );
63 } else {
64 iris_task trsm_depend_tasks[] = {
65 getrf_tasks[(step*TILE_NUM)+step],
66 gemm_tasks[((step-1)*TILE_NUM*TILE_NUM)+
67 (tile_ii*TILE_NUM)+step] };
68 iris_task_depend(
69 trsm_tasks[ ( tile_ii * TILE_NUM ) + step ],
70 2, trsm_depend_tasks );
71 }
72 // Encapsulate trsm tasks into the graph
73 laris_trsm_left_graph( graph,
74 trsm_tasks[(tile_ii*TILE_NUM)+step],
75 step, tile_ii, step, TILE_SIZE, TILE_SIZE,
76 IRIS_Ctile[step * TILE_NUM + step],
77 A_tile[step][step], TILE_SIZE,
78 IRIS_Ctile[tile_ii * TILE_NUM + step],
79 A_tile[tile_ii][step], TILE_SIZE );
80 }
81 for ( int tile_i = step + 1; tile_i < TILE_NUM;
82 tile_i++ ) {

83 for ( int tile_j = step + 1; tile_j < TILE_NUM
;

84 tile_j++ ) {
85 // gemm tasks
86 iris_task_create( &gemm_tasks[(step*TILE_NUM

*TILE_NUM) +
87 ((tile_i*TILE_NUM)+tile_j)] );
88 // Dependencies for gemm tasks
89 if ( step == 0 ) {
90 iris_task gemm_depend_tasks[] = {
91 trsm_tasks[(tile_i*TILE_NUM)+step],
92 trsm_tasks[(step*TILE_NUM)+tile_j] };
93 iris_task_depend(
94 gemm_tasks[(step*TILE_NUM*TILE_NUM)+((

tile_i*
95 TILE_NUM)+tile_j)], 2, gemm_depend_tasks

);
96 }
97 else {
98 iris_task gemm_depend_tasks[] = {
99 trsm_tasks[(tile_i*TILE_NUM)+step],

trsm_tasks[(step*TILE_NUM)+tile_j],
100 gemm_tasks[((step-1)*TILE_NUM*

TILE_NUM)+
101 ((tile_i*TILE_NUM)+tile_j)] };
102 iris_task_depend(
103 gemm_tasks[(step*TILE_NUM*TILE_NUM)+
104 ((tile_i*TILE_NUM)+tile_j)], 3,
105 gemm_depend_tasks );
106 }
107 // Encapsulate gemm tasks into the graph
108 laris_gemm_graph( graph,
109 gemm_tasks[(step*TILE_NUM*TILE_NUM)+
110 ((tile_i*TILE_NUM)+tile_j)], step,

tile_i,
111 tile_j, TILE_SIZE, TILE_SIZE, TILE_SIZE,

-1.0,
112 IRIS_Ctile[tile_i*TILE_NUM+step],
113 A_tile[tile_i][step], TILE_SIZE,
114 IRIS_Ctile[step*TILE_NUM+tile_j],
115 A_tile[step][ tile_j], TILE_SIZE, 1.0,
116 IRIS_Ctile[tile_i*TILE_NUM+tile_j],
117 A_tile[tile_i][tile_j], TILE_SIZE );
118 }
119 }
120 }
121 iris_graph_submit(graph, iris_default, 1);

Listing 1: LaRIS’s tiled LU factorization (GETRF) code.

1 int laris_gemm_graph(
2 iris_graph graph,
3 iris_task T,
4 int step, int tile_i, int tile_j,
5 int M, int N, int K,
6 TYPE ALPHA, iris_mem d_A, TYPE *h_A, int LDA,
7 iris_mem d_B, TYPE *h_B, int LDB,
8 TYPE BETA, iris_mem d_C, TYPE *h_C, int LDC )
9 {

10 // Memory communication -> input
11 iris_task_h2d(T, d_A, 0, M*K*sizeof(TYPE), h_A);
12 iris_task_h2d(T, d_B, 0, K*N*sizeof(TYPE), h_B);
13 iris_task_h2d(T, d_C, 0, M*N*sizeof(TYPE), h_C);
14 // IRIS-BLAS call
15 iris_core_nodt_gemm( T, IRIS_BLAS_COL_MAJOR,
16 IRIS_BLAS_NO_TRANS, IRIS_BLAS_NO_TRANS,
17 M, N, K, ALPHA, d_A, LDA,
18 d_B, LDB,BETA, d_C, LDC);
19 // Memory communication -> output
20 iris_task_d2h(T, d_C, 0, M*N*sizeof(TYPE), h_C);
21 iris_graph_task( graph, T, iris_any, NULL );
22 return 0;
23 }

Listing 3: LaRIS’s GEMM code.



1 // Creation of the IRIS graph
2 iris_graph graph; iris_graph_create(&graph);
3 iris_task getrf_tasks[TILE_NUM*TILE_NUM], trsm_tasks[TILE_NUM*TILE_NUM], gemm_tasks[TILE_NUM*TILE_NUM*

TILE_NUM];
4 // Tiled LU factorization
5 for ( int step = 0; step < TILE_NUM; step++ ) {
6 // GETRF tasks
7 iris_task_create(&getrf_tasks[(step*TILE_NUM)+step]);
8 // Dependencies for getrf tasks
9 iris_task getrf_depend_tasks[] = { gemm_tasks[((step-1)*TILE_NUM*TILE_NUM)+((step*TILE_NUM)+step)] };

10 iris_task_depend( getrf_tasks[(step*TILE_NUM) + step], 1, getrf_depend_tasks );
11 // Encapsulate GETRF tasks into the graph
12 laris_getrf_graph( graph, getrf_tasks[(step*TILE_NUM)+step],
13 step, step, step, TILE_SIZE, TILE_SIZE, IRIS_Ctile[step*TILE_NUM+step],
14 A_tile[step][step], TILE_SIZE );
15 for ( int tile_jj = 1 + step; tile_jj < TILE_NUM; tile_jj++ ) {
16 // trsm tasks
17 iris_task_create( &trsm_tasks[(step*TILE_NUM)+tile_jj] );
18 // Dependencies for trsm tasks
19 iris_task trsm_depend_tasks[] = { getrf_tasks[(step*TILE_NUM)+step],
20 gemm_tasks[((step-1)*TILE_NUM*TILE_NUM)+(step*TILE_NUM)+tile_jj]};
21 iris_task_depend( trsm_tasks[(step*TILE_NUM)+tile_jj], 2, trsm_depend_tasks );
22 // Encapsulate trsm tasks into the graph
23 laris_trsm_top_graph( graph, trsm_tasks[(step*TILE_NUM)+tile_jj], step, step, tile_jj,
24 TILE_SIZE, TILE_SIZE, IRIS_Ctile[step*TILE_NUM+step], A_tile[step][step], TILE_SIZE,
25 IRIS_Ctile[step*TILE_NUM+tile_jj], A_tile[step][tile_jj], TILE_SIZE );
26 }
27 for ( int tile_ii = 1 + step; tile_ii < TILE_NUM;tile_ii++ ) {
28 // trsm tasks
29 iris_task_create( &trsm_tasks[(tile_ii*TILE_NUM)+step] );
30 // Dependencies for trsm tasks
31 iris_task trsm_depend_tasks[] = { getrf_tasks[(step*TILE_NUM)+step],
32 gemm_tasks[((step-1)*TILE_NUM*TILE_NUM)+(tile_ii*TILE_NUM)+step] };
33 iris_task_depend( trsm_tasks[ ( tile_ii * TILE_NUM ) + step ], 2, trsm_depend_tasks );
34 // Encapsulate trsm tasks into the graph
35 laris_trsm_left_graph( graph, trsm_tasks[(tile_ii*TILE_NUM)+step], step, tile_ii, step,
36 TILE_SIZE, TILE_SIZE, IRIS_Ctile[step * TILE_NUM + step], A_tile[step][step], TILE_SIZE,
37 IRIS_Ctile[tile_ii * TILE_NUM + step], A_tile[tile_ii][step], TILE_SIZE );
38 }
39 for ( int tile_i = step + 1; tile_i < TILE_NUM; tile_i++ ) {
40 for ( int tile_j = step + 1; tile_j < TILE_NUM; tile_j++ ) {
41 // gemm tasks
42 iris_task_create( &gemm_tasks[(step*TILE_NUM*TILE_NUM) + ((tile_i*TILE_NUM)+tile_j)] );
43 // Dependencies for gemm tasks
44 iris_task gemm_depend_tasks[] = { trsm_tasks[(tile_i*TILE_NUM)+step], trsm_tasks[(step*TILE_NUM)+

tile_j],
45 gemm_tasks[((step-1)*TILE_NUM*TILE_NUM)+((tile_i*TILE_NUM)+tile_j)] };
46 iris_task_depend( gemm_tasks[(step*TILE_NUM*TILE_NUM)+((tile_i*TILE_NUM)+tile_j)], 3,
47 gemm_depend_tasks );
48 // Encapsulate gemm tasks into the graph
49 laris_gemm_graph( graph, gemm_tasks[(step*TILE_NUM*TILE_NUM)+((tile_i*TILE_NUM)+tile_j)], step,
50 tile_i, tile_j, TILE_SIZE, TILE_SIZE, TILE_SIZE,
51 -1.0, IRIS_Ctile[tile_i*TILE_NUM+step], A_tile[tile_i][step], TILE_SIZE,
52 IRIS_Ctile[step*TILE_NUM+tile_j], A_tile[step][ tile_j], TILE_SIZE,
53 1.0, IRIS_Ctile[tile_i*TILE_NUM+tile_j], A_tile[tile_i][tile_j], TILE_SIZE );
54 }
55 }
56 }
57 iris_graph_submit(graph, iris_default, 1);

Listing 2: LaRIS’s tiled LU factorization (GETRF) code.


	Introduction
	Related Work
	Background
	IRIS Run Time
	Tiled LU Factorization
	IRIS-BLAS

	LaRIS: Design and Objectives
	Enabling Portability
	Tiled Execution
	Current Status

	Tiled LU Implementation in LaRIS
	Tasks
	Automated DAG Creation and Scheduling
	Ensuring Utilization and Portability

	Experimental Setup
	Experiments
	Portability to Different Heterogeneous Devices
	Strong Scaling in a MultiGPU Environment
	Best Tile Configuration: a Trade-off between Parallelism and Overhead
	Opportunities

	Conclusions and Future Work
	References

