chine Learning

Q01

Architecture and Performance Group
CCSD
Aaron Young, Narasinga Rao Miniskar, Frank Liu, Willem Blokla

Aug 25, 2022
SMC 2022 Conference MOUNTAINS

i ciences and Engineering Conference

FT %, U.S. DEPARTMENT OF

ENERGY

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Overview

FPGA Design and Strengths

FPGA Development Challenges

Adrastea Desigh Environment

— Build Environment

— Kernel Interfacing

— Overall flow (Including Design Space Exploration)

Use-cases
— SNS Random Forest Application
— Fast Fourier Transform

%QAK RIDGE

tional Laboratory

FPGA Design and Strengths

* FPGAs excel at applications that
run close to the edge, for
workloads that require low-latency
solutions, and when the
application can be expressed as a
data-flow in a processing pipeline.

Task Parallelism with Pipelining

Tlme)

la

b

1

1c

I

2a

1d

1

2b
b
2C

https://docs.xilinx.com/r/en-

Three paradigms for FPGA kernel design:

Producer-Consumer

Producer |::> Consumer
Streaming Data

Task 1
Task 3 Task 4
Task 2 FIFO/PIPO

Pipelining

Sequential Latency

|

Before Pipelining |1A|1B[1C|2A| 2B/2C|3A|3B13C|

Iteration Latency

1
After Pipelining 1B

' 2A| 2B2C
%OAK RIDGE

38
National Laboratory

US/ug1399-vitis-hls/Three-Paradigms-for-Programming-FPGAs

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Three-Paradigms-for-Programming-FPGAs

Xilinx Vitis HLS Development Environment

High-Level Synthesis (HLS)

programs consist of: HLS Compilation Flow

° Kernel Code Host Code C/C++
'

— Written in C/C++, OpenCL, or =
RTL and built using the Vitis

compiler (v++) ¢

e Host Code g+

— Leverages OpenCL or XRT API
to execute on the @ Loads via XRT Runtime

acceleration kernel.

Target
Platform

%OAK RIDGE

1 Labor:

FPGAs for Edge and FPGA Development Challenges

e Push scientific Al to the edge

 FPGA is an ideal platform for low-
latency computational workloads,
widely deployed at the "edge"

e Development of FPGA kernels and
host interfaces tend to be slow and
tedious

e Proposal: Automatic turn-key FPGA
development environment
(incl. interface)

e Objective:
e Efficient FPGA implementation

e Rapid FPGA development

[¢ HLS Programming
eStandalone kernel
e Streaming

eHard to do Design
Space Exploration

_ (DSE) Kernel

Programming
& Optimization

Heterogenous
Compute

e Harder to achieve
task parallelism along
with other heterogenou

| SJ

compute units

eError prone and
complex Application
interfaces (OpenCL)

e No direct python
interfacing

Interfaces to
Xilinx Kernel

Build
Environment

*\ery slow build
process

eNeed expertise to
build Xilinx kernel

and linking to Host
kernel

J

%OAK RIDGE

National Laboratory

Adrastea FPGA Development

e
e Adrastea uses

python scripting to
generate the kernels

eProvide algorithmic
and architecture
knobs for DSE

® HLS Programming
eStandalone kernel
eStreaming

eHard to do Design
Space Exploration

\ (DSE) Kernel
Programming
& Optimization
Heterogenous
- Compute

*As Adrastea uses IRIS
task specification,
select the kernel and
compute unit at
runtime

eCan split the
workload to run on

. CPU, GPU and FPGA)

e Harder to achieve
task parallelism along
with other heterogenous
compute units

_ /

e Complex and Error
prone Application
interfaces (OpenCL)

e No direct python

o\

eAdrastea uses IRIS
run-time system APIs,
simple to use APIs and
iS common across
other compute units
such as CPUs and
GPUs.

eYou can call Xilinx

Interfaces to
Xilinx Kernel

Build
Environment

build Xilinx kernel
and linking to Host

interfacing FPGA kernel from
) Python /
N D
_ eUse Slurm
sVeryslowbuild eAdrastea Provides
*Need expertise to easy build

environment (CMake)

kernel eJust specify the
N) sources of kernels
and hosts
A

Adrastea Build/Compile Environment

* Long running FPGA builds (~hrs) can be accelerated by building multiple design in

parallel.
* FPGA Runs are faster (~mins) so a fewer number of run nodes can be shared by multiple

build nodes.
* VMs simplify toolchain installation and scaling up of cluster.

Infrastructure supporting the hardware optimization loop.

1) Build Hardware Designs GitLab-Cl Slurm
* Automated Builds Vitis Build Node Runtime
Results
Virtual Machine
Hardware
Optimization Bitfiles
Loop
2) Run Hardware Designs GitLab-Cl Slurm
* Automated Runs ..
* Heterogeneous Hardware Vitis Run Node
Accelerators , , «— FPGA
Virtual Machine

«—— GPU

FPGA Development with Python Interface through IRIS

r

Xilinx Vitis

—_— x
Toolchain

—

-

kl

Host Code
IRIS API

L, Intel FPGA
Toolchain

CUDA
—_— : —
Compiler
Host
—_— : —_
Compiler
Host
—_— : —_
Compiler

RS
Host
Binary

IRIS
Run-
time

~\

Xilinx
FPGA

J
Intel
FPGA
Nvidia
GPU
X86
CPU Cores
ARM
CPU Cores
Adreno
GPU

Hexagon
DSP

import iris
def run_random_forest(args, test_data):

features= test_data.data
Y = test_data.target
Y predict = np.zeros(Y.size, dtype=np.int8)
SIZE = Y.size
iris.init() # Initialize IRIS Run-time
mem_features = iris.mem(features.nbytes)
mem_Y_predict = iris.mem(Y_predict.nbytes)
task = iris.task() # Create IRIS task
task.h2d(mem_features, 0, features.nbytes, features)
task.kernel("rf_classifier", 1, [0], [1], [1],
[mem_features, SIZE, mem_Y_predict], #Parameters
[iris.iris_r, 4, iris.iris_w]) # Parameters information
task.d2h(mem_Y_predict, 0, Y_predict.nbytes, Y_predict)
cu = iris.iris_cpu
if args.cu == 'fpga":
cu = iris.iris_fpga
task.submit(cu)
iris.finalize()

UAKN N1IDGE
National Laboratory

Overall Adrastea Build Flow

Knobs . :
(From DEFFE) evaluate.sh — Build Flow Details

* Complete bUIId ﬂOW Built Along with Other IRIS Kernels

\

\

Y \

leverages: ST
ML)!| MLCode | |FPGAfriendly] | Vits || RTL | | Vivado |!| Fpga
. Model Generator HLS Model Toolchain Design Toolchain Bitst
— Build VMs j onerato [Bitstrearn

| [

Input * Automated ML-FPGA Development
— Slurm

— DEFFE (Design space - - ﬁ — ﬁ
Exploration) contig.Json evaluate:sh| | extract.s

— Vitis and Vivado

— Custom HSL generator DEFFE

| |
L] v v
. . G t i
Toolchains [Sampling HEXISZS:T?G?"(H Build HRun&Extract}b[R\;Vsrglis]
—

script

p Build Partition Run Partition

— |R|S i ? i f Slurm
Xilinx Vitis RIS
Toolchain Runtime

%OAK RIDGE

National Laboratory

I %OAK RIDGE
National Laboratory

Example: SNS Random
Forest Application

Adrastea for Ultra-low latency Random Forest ML deployment on Edge

- 1ms
5 16.6ms | iﬂ_
5
O
60Hz rep rate Macro-pulse
Feat . 10000 mini pulses;
eatures: == Tmini palse/is
Streaming: ICSEREUREHIIIIIN ~ = === === === 6 Cycles
Levels: 625
FPGA Corelogic: o N—
oreLoglc - - Pipeline Depth:63T
Output Prediction: . 32-bit I ________________
Predicted Class-1 | Class-0 T J Final
lass nused| Votes Votes . . icti
é.bm y (g_[t)it) (8_f,it) Early Predictions (MSB=1) iﬁgg'&n

At edge, integration of FPGA Classifier with Beam Line

* SNS Background:

* lll-formed SNS beam pulses must be aborted quickly to avoid
equipment damage

* Intra-pulse abort signal only has response time of a 1 us

* ML methods have shown to be effective, but have large

computational latency

* Proposal: Ultra-Low latency Streaming based Random

Forest Classifier on FPGA

* Measured latency of 60 ns(100mHz) and early prediction

Trace and Voting by Random Forest

Multi-precision
FXP Converter

AXI4-5 AXI4-S
Digitizer Lo
i i Buffer
16-bit o
F(epar:)uVrI::?n » (16 features) 16 blt:
Stream) Stream

Streaming
RF Classifier

50.0m- -100
+ "« Votesl
| %« Votesd B
40.0m I A Signal 80
= 30.0m- -60
AXI4-S 5
Y 20.0m- -40
32-pit| Prediction . -
om- =
> of Errant m’
beam 0.0- -0

' ! ! ' ' ! ' ' ' ' o
2999 4000 5000 6000 7000 8000 9000 10000 11000 12000 13299
Sample

FPL 2022, Ultra Low Latency Machine Learning for Scientific Edge Applications, Narasinga Rao Miniskar, Aaron Young, Frank Liu,
Willem Blokland, Anthony Cabrera and Jeffery S. Vetter

S910/\

12

SNS Random Forest Parameters for Design Space Exploration

Parameters used for experiments

of oe:

Build 50, 100, 200, 300*, 500
Decision tree Generator 5 Conditional (conditional_trees),
Flattened*
Bitwise optimization [N EIe; 2 Yes*, No (no_bitwise)
Float (FP32), Fixed 8-bit(FX8),
Feature datatype Generator 12 FT100*, FT90, FT80, FT70, FT60,

FT50, FT40, FT30, FT20, FT10

)) Quantization™,
Fixed point type Generator 2 sewa (15 GuUATHETa]
) Array (array_votes), SSA*,

1440 design points *. Base Parameters (The best)

With Avg 4 hrs/design point, sequential build takes 240 days
¥ OAK RIDGE

- National Laboratory

Comparison with different build options Optimization metrics of interest for

. . _ different input feature datatypes
Design Space CoEE e

B SNS

° H100 B Olivetti Interval g 1.0 " ® e
EXploratlon Of B Eo‘s- Prediction Accuracy o
B . Compared to Floating point Scik
o V.07
S N S 2 Model T~
8 0.4 — IRIS
(b> ﬁzs "é‘ 00l — ISBIr\IeSast Cancer
- Core Latency < | — owew e,
G 0.0 T :
Pa rameter 52" (b) :@ 217 B RIS [0 Breast Cancer [SNS I Olivetti
i g
Frequency (MHz) 32
wn
© @ : : Feature 5 2"
Decision tree EZ Execution Time (Sec) (SBliii) % 2]
£x 2 5]
g 5 3
Bitwise optimization -
g (c) o ! [LUTAsMem (58 BRAM BN LUT BN REG
@ 3™ Total latency (Cycles) 1,
g otal latency (Cycles 25
Feature datatype g Resource 8 4/
gzoo Uti“ZatiOn§ 34
%100 éd; 2
Fixed point t T 1
IXea point type @ 2 _ _ _ @,
& 6 LUTAsMem BRAM LUT REG
Resource & (d) [Core [A2S [EE S2A
i Utilization 2+ _ 200, Latency
Voting £ 150
£ 5
POt . T 2 e Ty : g 1%
s A [i R

no_quantization
:onditional_trees

0_
FP32 FX8 FT100 FT90 FT80 FT70 FT60 FT50 FT40 FT30 FT20 FT10

Parameters: Frequency, Bitwise, Voting, Decision Tree .)
Parameters: Feature Data Type (Float, Fixed point Threshold)

I %OAK RIDGE
National Laboratory

Example: Fast Fourier
Transform Application

Example: Design Space Exploration of FFT

Freq (MHz)
3 50
=3 100
3 200
B 300
= 500

e AFM Analyzer uses FFT to
remove noise in the scan line

[H2D
3 Kernel
I D2H

Runtime (Seconds)

* FFT Design Parameters
— FFT Length: 1024 - 65536
— FFT Size: 1M to 4M | B LiTasteen

— Frequency of FPGA: 50 to =t
500 MHz

— Datatype 32bit float

Sum of Resource Usage %

© <t © <t © <t © <t © <t © < © <t
o> o o~ o o~ o o~ o o~ o o~ o o~ o
0 (sp] Te] (sp] 0 [sp] o ™ 0 ™ n [sp)] LN [sp]
[ee] oy [ee] < oo} Sy oo} < oe] < [ee] <t (o] <
<)] < <] < o] < o] < o] < (<] < (<]
o — o — o — o — o — o i (=] —
— <t — <t — <t — <t — <t — <t — <t
<t <t [ee] [ee] © © N N < < <] [<¢] © ©
N N < <t [*)] (o)) o] o] oo} os] © © [op] [sp]
o o o o (=] (=] — — ™ ™ D~ D~ n 0
— — o~ (9] <t <t oe] [oe] © © [[To] 0

™ [ep] © ©

FFT Length : FFT Size

Effectiveness of Adrastea

Adrastea Based

Traditional FPGA Design Adrastea Based SNS Random Forest

FFT
Adrastea
Integration - 1 hr (Easy Setup) 1 hr
Time
Interface
Programming Weeks (Needs Expertise) 1 hr (Very easy, similar to a function call) 1 hr
Time

Build Script

Writing 2 Days (Needs Expertise) 1 hr (Very easy, as configuring a CMake variable) 1 hr
Average Build ~ 4hrs ~4 hrs ~9 hrs
Time
Number of
Builds 90 (Manual) 90 54
Months

Design Space ~13 Days (SNS)

Exprll‘(i)rxl'laglon ~921 Days (FFT) ~15 hrs ~26 hrs
(Sequential Build Time)
Graphing 6 hrs 3 hrs (Data is already tabulated) 3 hrs

Time

Conclusion

e Adrastea is an automated and efficient design environment to design,
implement, and optimize complex FPGA kernels and their interfaces.

— This is done by leveraging the DEFFE design space exploration tool across
multiple identical VMs with the toolchain's setup and by using IRIS APIs
to simplify FPGA kernel writing.

 We demonstrated the potential of Adrastea to reduce FPGA development
time with two example applications, Random Forest and Fast Fourier
Transformes.

e Adrastea performed the design space exploration and optimization in days

in parallel whereas traditional sequential methods would have taken
months.

%OAK RIDGE
-Na

tional Laboratory
17

18

Thank you

%

OAK RIDGE

National Labor:

