
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Adrastea: An Efficient FPGA Design Environment for
Heterogeneous Scientific Computing and Machine Learning

Architecture and Performance Group

CCSD

Aaron Young, Narasinga Rao Miniskar, Frank Liu, Willem Blokland, Jeffrey Vetter

Aug 25, 2022

SMC 2022 Conference

2

Overview

• FPGA Design and Strengths

• FPGA Development Challenges

• Adrastea Design Environment
– Build Environment
– Kernel Interfacing
– Overall flow (Including Design Space Exploration)

• Use-cases
– SNS Random Forest Application
– Fast Fourier Transform

3

FPGA Design and Strengths
• FPGAs excel at applications that

run close to the edge, for
workloads that require low-latency
solutions, and when the
application can be expressed as a
data-flow in a processing pipeline.

Three paradigms for FPGA kernel design:

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Three-Paradigms-for-Programming-FPGAs

FIFO/PIPO

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Three-Paradigms-for-Programming-FPGAs

4

Xilinx Vitis HLS Development Environment

High-Level Synthesis (HLS)
programs consist of:

• Kernel code
– Written in C/C++, OpenCL, or

RTL and built using the Vitis
compiler (v++)

• Host Code
– Leverages OpenCL or XRT API

to execute on the
acceleration kernel.

C/C++ OpenCL RTL

v++ -c v++ -c package_xo

v++ -l

.xo .xo .xo

Target
Platform

.xclbin

Host Code

g++ -c

.o

g++

a.out Loads via XRT Runtime

HLS Compilation Flow

5

FPGAs for Edge and FPGA Development Challenges

•Very slow build
process

•Need expertise to
build Xilinx kernel
and linking to Host
kernel

•Harder to achieve
task parallelism along
with other heterogenous
compute units

Kernel
Programming

& Optimization
Interfaces to
Xilinx Kernel

Build
Environment

Heterogenous
Compute

•HLS Programming
•Standalone kernel
•Streaming

•Hard to do Design
Space Exploration

 (DSE)

•Error prone and
complex Application
interfaces (OpenCL)

•No direct python
interfacing

• Push scientific AI to the edge

• FPGA is an ideal platform for low-
latency computational workloads,
widely deployed at the "edge"

• Development of FPGA kernels and
host interfaces tend to be slow and
tedious

• Proposal: Automatic turn-key FPGA
development environment
(incl. interface)

• Objective:
• Efficient FPGA implementation

• Rapid FPGA development

6

Adrastea FPGA Development
•Adrastea uses

python scripting to
generate the kernels

•Provide algorithmic
and architecture
knobs for DSE

•As Adrastea uses IRIS
task specification,
select the kernel and
compute unit at
runtime

•Can split the
workload to run on
CPU, GPU and FPGA

•Adrastea uses IRIS
run-time system APIs,
simple to use APIs and
is common across
other compute units
such as CPUs and
GPUs.

•You can call Xilinx
FPGA kernel from
Python

•Use Slurm
•Adrastea Provides

easy build
environment (CMake)

•Just specify the
sources of kernels
and hosts

•Very slow build
•Need expertise to

build Xilinx kernel
and linking to Host
kernel

•Harder to achieve
task parallelism along
with other heterogenous
compute units

Kernel
Programming

& Optimization
Interfaces to
Xilinx Kernel

Build
Environment

Heterogenous
Compute

•HLS Programming
•Standalone kernel
•Streaming

•Hard to do Design
Space Exploration

 (DSE)

•Complex and Error
prone Application
interfaces (OpenCL)

•No direct python
interfacing

7

Adrastea Build/Compile Environment

Infrastructure supporting the hardware optimization loop.

• Long running FPGA builds (∼hrs) can be accelerated by building multiple design in
parallel.

• FPGA Runs are faster (∼mins) so a fewer number of run nodes can be shared by multiple
build nodes.

• VMs simplify toolchain installation and scaling up of cluster.

FPGA
GPU

Bitfiles

Runtime
Results

Vitis Build Node

GitLab-CI Slurm

Virtual Machine

Vitis Run Node

GitLab-CI Slurm

Virtual Machine

8

FPGA Development with Python Interface through IRIS
import iris
def run_random_forest(args, test_data):

features= test_data.data
Y = test_data.target
Y_predict = np.zeros(Y.size, dtype=np.int8)
SIZE = Y.size
iris.init() # Initialize IRIS Run-time
mem_features = iris.mem(features.nbytes)
mem_Y_predict = iris.mem(Y_predict.nbytes)
task = iris.task() # Create IRIS task
task.h2d(mem_features, 0, features.nbytes, features)
task.kernel("rf_classifier", 1, [0], [1], [1],

[mem_features, SIZE, mem_Y_predict], #Parameters
[iris.iris_r, 4, iris.iris_w]) # Parameters information

task.d2h(mem_Y_predict, 0, Y_predict.nbytes, Y_predict)
cu = iris.iris_cpu
if args.cu == 'fpga':

cu = iris.iris_fpga
task.submit(cu)
iris.finalize()

OpenCL XCLBIN
Library

Host Code
IRIS API

Host
Compiler

IRIS
Library

Host
Binary

Xilinx
FPGA

Nvidia
GPU

X86
CPU Cores

Intel
FPGAIntel FPGA

Toolchain
AOCX

Library

ARM
CPU Cores

Adreno
GPU

Hexagon
DSP

XilinxC++

OpenMP Host
Compiler

OpenMP
Library

CUDA CUDA
Compiler

CUDA
Library

IRIS
Run-
time

Xilinx Vitis
Toolchain

9

Overall Adrastea Build Flow

• Complete build flow
leverages:
– Build VMs
– Slurm
– DEFFE (Design space

Exploration)
– Vitis and Vivado

Toolchains
– Custom HSL generator

script
– IRIS

Built Along with Other IRIS Kernels

Example: SNS Random
Forest Application

Adrastea for Ultra-low latency Random Forest ML deployment on Edge

• SNS Background:
• Ill-formed SNS beam pulses must be aborted quickly to avoid

equipment damage
• Intra-pulse abort signal only has response time of a 1 µs

• ML methods have shown to be effective, but have large
computational latency

• Proposal: Ultra-Low latency Streaming based Random
Forest Classifier on FPGA

• Measured latency of 60 ns (100MHz) and early prediction

Features:

Streaming:

FPGA CoreLogic:

Output Prediction:

Levels: 625;
Pipeline Depth:631

(MSB=0)

10000 mini pulses;
1mini pulse/µs

6 Cycles

Early Predictions (MSB=1)
Final

Prediction

16.6ms 1ms

Macro-pulse

16-features

Cu
rr

en
t

60Hz rep rate

Predicted
Class

(8-bit)
Unused

Class-1
Votes
(8-bit)

Class-0
Votes
(8-bit)

32-bit

Buffer
(16 features)

Stream

Digitizer
(Provides

Features in
Stream)

Streaming
RF Classifier

Prediction
of Errant

beam

AXI4-S AXI4-S AXI4-S

16-bit
16x

16-bit
Multi-precision
FXP Converter 32-bit

At edge, integration of FPGA Classifier with Beam Line

FPL 2022, Ultra Low Latency Machine Learning for Scientific Edge Applications, Narasinga Rao Miniskar, Aaron Young, Frank Liu,
Willem Blokland, Anthony Cabrera and Jeffery S. Vetter

12

SNS Random Forest Parameters for Design Space Exploration

Parameter Type # of Values Values
Frequency (MHz) Build 5 50, 100, 200, 300*, 500

Decision tree Generator 2
Conditional (conditional_trees),

Flattened*
Bitwise optimization Generator 2 Yes*, No (no_bitwise)

Feature datatype Generator 12
Float (FP32), Fixed 8-bit(FX8),

FT100*, FT90, FT80, FT70, FT60,
FT50, FT40, FT30, FT20, FT10

Fixed point type Generator 2
Quantization*,

Power2 (no_quantization)

Voting Generator 3
Array (array_votes), SSA*,

No-SSA (no_votes_ssa)
*: Base Parameters (The best)

Parameters used for experiments

1440 design points
With Avg 4 hrs/design point, sequential build takes 240 days

13

Design Space
Exploration of
SNS

Comparison with different build options Optimization metrics of interest for
different input feature datatypes

Parameter Type # of Values Values
Frequency (MHz) Build 5 50, 100, 200, 300*, 500

Decision tree Generator 2
Conditional (conditional_trees),

Flattened*
Bitwise optimization Generator 2 Yes*, No (no_bitwise)

Feature datatype Generator 12
Float (FP32), Fixed 8-bit(FX8),

FT100*, FT90, FT80, FT70, FT60,
FT50, FT40, FT30, FT20, FT10

Fixed point type Generator 2
Quantization*,

Power2 (no_quantization)

Voting Generator 3
Array (array_votes), SSA*,

No-SSA (no_votes_ssa)
*: Base Parameters (The best)

Initiation
Interval

Core Latency

Execution Time (Sec)

Total latency (Cycles)

Resource
Utilization

Parameters: Frequency, Bitwise, Voting, Decision Tree

Prediction Accuracy
Compared to Floating point Scikit

Parameters: Feature Data Type (Float, Fixed point Threshold)

Latency

Resource
Utilization

Feature
Size

(Bits)

Example: Fast Fourier
Transform Application

15

Example: Design Space Exploration of FFT

• AFM Analyzer uses FFT to
remove noise in the scan line

• FFT Design Parameters
– FFT Length: 1024 - 65536
– FFT Size: 1M to 4M
– Frequency of FPGA: 50 to

500 MHz
– Datatype 32bit float

FFT Length : FFT Size

16

Effectiveness of Adrastea
Traditional FPGA Design Adrastea Based SNS Random Forest Adrastea Based

FFT
Adrastea

Integration
Time

- 1 hr (Easy Setup) 1 hr

Interface
Programming

Time
Weeks (Needs Expertise) 1 hr (Very easy, similar to a function call) 1 hr

Build Script
Writing 2 Days (Needs Expertise) 1 hr (Very easy, as configuring a CMake variable) 1 hr

Average Build
Time ~ 4hrs ∼4 hrs ∼9 hrs

Number of
Builds 90 (Manual) 90 54

Design Space
Exploration

Time

Months
∼13 Days (SNS)
∼21 Days (FFT)

(Sequential Build Time)

∼15 hrs ∼26 hrs

Graphing
Time 6 hrs 3 hrs (Data is already tabulated) 3 hrs

17

Conclusion

• Adrastea is an automated and efficient design environment to design,
implement, and optimize complex FPGA kernels and their interfaces.
– This is done by leveraging the DEFFE design space exploration tool across

multiple identical VMs with the toolchain's setup and by using IRIS APIs
to simplify FPGA kernel writing.

• We demonstrated the potential of Adrastea to reduce FPGA development
time with two example applications, Random Forest and Fast Fourier
Transforms.

• Adrastea performed the design space exploration and optimization in days
in parallel whereas traditional sequential methods would have taken
months.

18

Thank you

