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Overview

• FPGA Design and Strengths

• FPGA Development Challenges

• Adrastea Design Environment
– Build Environment
– Kernel Interfacing
– Overall flow (Including Design Space Exploration) 

• Use-cases
– SNS Random Forest Application
– Fast Fourier Transform
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FPGA Design and Strengths
• FPGAs excel at applications that 

run close to the edge, for 
workloads that require low-latency 
solutions, and when the 
application can be expressed as a 
data-flow in a processing pipeline.

Three paradigms for FPGA kernel design:

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Three-Paradigms-for-Programming-FPGAs 

FIFO/PIPO

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Three-Paradigms-for-Programming-FPGAs
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Xilinx Vitis HLS Development Environment

High-Level Synthesis (HLS) 
programs consist of:

• Kernel code
– Written in C/C++, OpenCL, or 

RTL and built using the Vitis 
compiler (v++)

• Host Code
– Leverages OpenCL or XRT API 

to execute on the 
acceleration kernel.

C/C++ OpenCL RTL

v++ -c v++ -c package_xo

v++ -l

.xo .xo .xo

Target
Platform

.xclbin

Host Code

g++ -c

.o

g++

a.out Loads via XRT Runtime

HLS Compilation Flow
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FPGAs for Edge and FPGA Development Challenges

•Very slow build 
process

•Need expertise to 
build Xilinx kernel 
and linking to Host 
kernel

•Harder to achieve
task parallelism along 
with other heterogenous 
compute units

Kernel 
Programming 

& Optimization
Interfaces to 
Xilinx Kernel

Build 
Environment

Heterogenous 
Compute

•HLS Programming
•Standalone kernel 
•Streaming

•Hard to do Design 
Space Exploration

  (DSE)

•Error prone and 
complex Application 
interfaces (OpenCL) 

•No direct python 
interfacing  

• Push scientific AI to the edge

• FPGA is an ideal platform for low-
latency computational workloads, 
widely deployed at the "edge"

• Development of FPGA kernels and 
host interfaces tend to be slow and 
tedious

• Proposal: Automatic turn-key FPGA 
development environment 
(incl. interface)

• Objective: 
• Efficient FPGA implementation

• Rapid FPGA development
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Adrastea FPGA Development 
•Adrastea uses 

python scripting to 
generate the kernels

•Provide algorithmic 
and architecture 
knobs for DSE

•As Adrastea uses IRIS 
task specification, 
select the kernel and 
compute unit at 
runtime

•Can split the 
workload to run on 
CPU, GPU and FPGA

•Adrastea uses IRIS 
run-time system APIs, 
simple to use APIs and 
is common across 
other compute units 
such as CPUs and 
GPUs.

•You can call Xilinx 
FPGA kernel from 
Python 

•Use Slurm
•Adrastea Provides 

easy build 
environment (CMake)

•Just specify the 
sources of kernels 
and hosts

•Very slow build
•Need expertise to 

build Xilinx kernel 
and linking to Host 
kernel

•Harder to achieve
task parallelism along 
with other heterogenous 
compute units

Kernel 
Programming 

& Optimization
Interfaces to 
Xilinx Kernel

Build 
Environment

Heterogenous 
Compute

•HLS Programming
•Standalone kernel 
•Streaming

•Hard to do Design 
Space Exploration

  (DSE)

•Complex and Error 
prone Application 
interfaces (OpenCL)

•No direct python 
interfacing  



7

Adrastea Build/Compile Environment

Infrastructure supporting the hardware optimization loop.

• Long running FPGA builds (∼hrs) can be accelerated by building multiple design in 
parallel.

• FPGA Runs are faster (∼mins) so a fewer number of run nodes can be shared by multiple 
build nodes.

• VMs simplify toolchain installation and scaling up of cluster.

FPGA
GPU

Bitfiles

Runtime
Results

Vitis Build Node

GitLab-CI Slurm

Virtual Machine

Vitis Run Node

GitLab-CI Slurm

Virtual Machine
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FPGA Development with Python Interface through IRIS
import iris
def run_random_forest(args, test_data):

features= test_data.data
Y = test_data.target
Y_predict = np.zeros(Y.size, dtype=np.int8)
SIZE = Y.size
iris.init()   # Initialize IRIS Run-time
mem_features = iris.mem(features.nbytes)
mem_Y_predict = iris.mem(Y_predict.nbytes)
task = iris.task()   # Create IRIS task 
task.h2d(mem_features, 0, features.nbytes, features)
task.kernel("rf_classifier", 1, [0], [1], [1],

[mem_features, SIZE, mem_Y_predict], #Parameters
[iris.iris_r, 4, iris.iris_w] )   # Parameters information

task.d2h(mem_Y_predict, 0, Y_predict.nbytes, Y_predict)
cu = iris.iris_cpu
if args.cu == 'fpga':

cu = iris.iris_fpga
task.submit(cu)
iris.finalize()

OpenCL XCLBIN 
Library

Host Code
IRIS API

Host 
Compiler

IRIS 
Library

Host 
Binary

Xilinx
FPGA

Nvidia 
GPU

X86 
CPU Cores

Intel
FPGAIntel FPGA 

Toolchain
AOCX 

Library

ARM
CPU Cores

Adreno
GPU

Hexagon
DSP

XilinxC++

OpenMP Host 
Compiler

OpenMP 
Library

CUDA CUDA 
Compiler

CUDA 
Library

IRIS
Run-
time

Xilinx Vitis 
Toolchain
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Overall Adrastea Build Flow

• Complete build flow 
leverages:
– Build VMs
– Slurm
– DEFFE (Design space 

Exploration)
– Vitis and Vivado 

Toolchains
– Custom HSL generator 

script
– IRIS

Built Along with Other IRIS Kernels



Example: SNS Random 
Forest Application



Adrastea for Ultra-low latency Random Forest ML deployment on Edge 

• SNS Background: 
• Ill-formed SNS beam pulses must be aborted quickly to avoid 

equipment damage
• Intra-pulse abort signal only has response time of a 1 µs

• ML methods have shown to be effective, but have large 
computational latency

• Proposal: Ultra-Low latency Streaming based Random 
Forest Classifier on FPGA 

• Measured latency of 60 ns (100MHz) and early prediction 

Features:

Streaming:

FPGA CoreLogic:

Output Prediction:

Levels: 625; 
Pipeline Depth:631

(MSB=0)

10000 mini pulses; 
1mini pulse/µs

6 Cycles

Early Predictions (MSB=1)
Final

Prediction

16.6ms 1ms

Macro-pulse

16-features

Cu
rr

en
t

60Hz rep rate

Predicted 
Class

(8-bit)
Unused

Class-1 
Votes 
(8-bit)

Class-0 
Votes 
(8-bit)

32-bit

Buffer 
(16 features)

Stream 

Digitizer
(Provides 

Features in 
Stream)

Streaming
RF Classifier

Prediction 
of Errant 

beam

AXI4-S AXI4-S AXI4-S

16-bit
16x

16-bit
Multi-precision 
FXP Converter 32-bit

At edge, integration of FPGA Classifier with Beam Line

FPL 2022, Ultra Low Latency Machine Learning for Scientific Edge Applications, Narasinga Rao Miniskar, Aaron Young, Frank Liu, 
Willem Blokland, Anthony Cabrera and Jeffery S. Vetter
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SNS Random Forest Parameters for Design Space Exploration

Parameter Type # of Values Values
Frequency (MHz) Build 5 50, 100, 200, 300*, 500

Decision tree Generator 2
Conditional (conditional_trees), 

Flattened*
Bitwise optimization Generator 2 Yes*, No (no_bitwise)

Feature datatype Generator 12
Float (FP32), Fixed 8-bit(FX8),       

FT100*, FT90, FT80, FT70, FT60, 
FT50, FT40, FT30, FT20, FT10

Fixed point type Generator 2
Quantization*, 

Power2 (no_quantization)

Voting Generator 3
Array (array_votes), SSA*, 

No-SSA (no_votes_ssa)
*: Base Parameters (The best)

Parameters used for experiments

1440 design points
With Avg 4 hrs/design point, sequential build takes 240 days
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Design Space 
Exploration of 
SNS

Comparison with different build options Optimization metrics of interest for 
different input feature datatypes

Parameter Type # of Values Values
Frequency (MHz) Build 5 50, 100, 200, 300*, 500

Decision tree Generator 2
Conditional (conditional_trees), 

Flattened*
Bitwise optimization Generator 2 Yes*, No (no_bitwise)

Feature datatype Generator 12
Float (FP32), Fixed 8-bit(FX8),       

FT100*, FT90, FT80, FT70, FT60, 
FT50, FT40, FT30, FT20, FT10

Fixed point type Generator 2
Quantization*, 

Power2 (no_quantization)

Voting Generator 3
Array (array_votes), SSA*, 

No-SSA (no_votes_ssa)
*: Base Parameters (The best)

Initiation 
Interval

Core Latency

Execution Time (Sec)

Total latency (Cycles)

Resource 
Utilization

Parameters: Frequency, Bitwise, Voting, Decision Tree 

Prediction Accuracy
Compared to Floating point Scikit 

Parameters: Feature Data Type (Float, Fixed point Threshold)

Latency

Resource 
Utilization

Feature
Size

(Bits)



Example: Fast Fourier 
Transform Application
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Example: Design Space Exploration of FFT

• AFM Analyzer uses FFT to 
remove noise in the scan line

• FFT Design Parameters
– FFT Length: 1024 - 65536
– FFT Size: 1M to 4M
– Frequency of FPGA: 50 to 

500 MHz
– Datatype 32bit float

FFT Length : FFT Size
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Effectiveness of Adrastea
Traditional FPGA Design Adrastea Based SNS Random Forest Adrastea Based 

FFT
Adrastea 

Integration 
Time

- 1 hr (Easy Setup) 1 hr

Interface 
Programming 

Time
Weeks (Needs Expertise) 1 hr (Very easy, similar to a function call) 1 hr

Build Script 
Writing 2 Days (Needs Expertise) 1 hr (Very easy, as configuring a CMake variable) 1 hr

Average Build 
Time ~ 4hrs ∼4 hrs ∼9 hrs

Number of 
Builds 90 (Manual) 90 54

Design Space 
Exploration 

Time

Months
∼13 Days (SNS)
∼21 Days (FFT)

(Sequential Build Time)

∼15 hrs ∼26 hrs

Graphing 
Time 6 hrs 3 hrs (Data is already tabulated) 3 hrs
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Conclusion

• Adrastea is an automated and efficient design environment to design, 
implement, and optimize complex FPGA kernels and their interfaces.
– This is done by leveraging the DEFFE design space exploration tool across 

multiple identical VMs with the toolchain's setup and by using IRIS APIs 
to simplify FPGA kernel writing.

• We demonstrated the potential of Adrastea to reduce FPGA development 
time with two example applications, Random Forest and Fast Fourier 
Transforms.

• Adrastea performed the design space exploration and optimization in days 
in parallel whereas traditional sequential methods would have taken 
months.
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Thank you


