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Abstract. We present Adrastea, an efficient FPGA design environment
for developing scientific machine learning applications. FPGA develop-
ment is challenging, from deployment, proper toolchain setup, program-
ming methods, interfacing FPGA kernels, and more importantly, the
need to explore design space choices to get the best performance and area
usage from the FPGA kernel design. Adrastea provides an automated and
scalable design flow to parameterize, implement, and optimize complex
FPGA kernels and associated interfaces. We show how virtualization
of the development environment via virtual machines is leveraged to
simplify the setup of the FPGA toolchain while deploying the FPGA
boards and while scaling up the automated design space exploration
to leverage multiple machines concurrently. Adrastea provides an auto-
mated build and test environment of FPGA kernels. By exposing design
space hyper-parameters, Adrastea can automatically search the design
space in parallel to optimize the FPGA design for a given metric, usually
performance or area. Adrastea simplifies the task of interfacing with
the FPGA kernels with a simplified interface API. To demonstrate the
capabilities of Adrastea, we implement a complex random forest machine
learning kernel with 10,000 input features while achieving extremely low
computing latency without loss of prediction accuracy, which is required
by a scientific edge application at SNS. We also demonstrate Adrastea
using an FFT kernel and show that for both applications Adrastea is able
to systematically and efficiently evaluate different design options, which
reduced the time and effort required to develop the kernel from months
of manual work to days of automatic builds.

Keywords: Design Space Exploration, FPGA Development Environ-
ment, Heterogeneous Computing, Scientific Computing, Machine Learning

1 Introduction

Field-Programmable Gate Arrays (FPGAs) enable the development and
deployment of custom hardware designs via programmable logic blocks, which can
be reconfigured to perform custom functions and allow for flexible, reconfigurable
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computing. FPGAs excel at applications that run close to the edge (near the
data collection) and for workloads that require low-latency solutions. FPGAs
also excel at applications that can be expressed as data-flows between tasks
and where the tasks can be implemented as a processing pipeline. Then during
execution, the data flows between kernels in a stream, and the processing is done
via pipelines to maximize performance.

Some examples of low-latency applications that work well on FPGAs include
traditional real-time industrial control applications where fixed latencies are
mandatory[18, 4] and other typical low-latency FPGA applications, including
financial technology[14, 8, 16], communication and networking[17, 20, 6, 2], and
real-time cryptosystems [10, 9].

Although historically, FPGAs have been primarily used for embedded systems
and custom low-level designs, FPGAs are becoming increasingly accessible as
general compute accelerator cards. FPGAs are now being packaged in server-
grade PCIe cards, with software support to enable quick reloading of designs and
handling common tasks such as execution control and data transfer from the host
to the FPGA. High-Level Synthesis (HLS) allows FPGA kernels to be written in
higher-level languages like OpenCL, then compiled to the FPGA design through
the HLS design flow.

Although FPGAs can now be used effectively in a shared server environment
and HLS eases the complexity of FPGA kernel design, FPGA development is
still challenging. Challenges with FPGA development include kernel deployment,
proper toolchain setup, programming methods, interfacing with FPGA kernels,
time consuming HLS compilation/synthesis time, and, more importantly, the
need to explore design space choices to get the best performance and area usage
from the FPGA kernel design. We present Adrastea, an efficient FPGA design
environment for developing optimized kernels for high-performance applications
to address these challenges. Adrastea provides an automated and scalable design
flow to parameterize, implement, and optimize complex FPGA kernels and
associated interfaces. In this paper, we show how virtualization of the development
environment via virtual machines is leveraged to simplify the setup of the FPGA
toolchain while deploying the FPGA boards and while scaling up the automated
design space exploration to leverage multiple machines concurrently. Adrastea
provides an automated build and test environment for FPGA kernels. By exposing
design space hyperparameters, Adrastea can automatically search the design space
in parallel to optimize the FPGA design for a given metric, usually performance
or area. Adrastea also simplifies the task of interfacing with the FPGA kernels
by providing a simplified interface API.

To demonstrate the capabilities of Adrastea, we implement a complex Ran-
dom Forest machine learning kernel with 10,000 input features while achieving
extremely low computing latency without loss of prediction accuracy, which is
required by a scientific edge application at SNS. While developing this kernel,
Adrastea was utilized to systematically and efficiently evaluate different design
options, which reduced the time and effort required to develop the kernel. The
Random Forest kernel implemented with Adrastea is 5x area-efficient and can
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perform inference in 60 nanoseconds. We have also demonstrated the ease of
using Adrastea by leveraging Adrastea to perform a design space search on
a Fast Fourier Transform (FFT) kernel. We demonstrated that the Adrastea
framework results in an accelerated FPGA development and optimization cycle
able to perform months of effort in days. The main contribution of this paper is
summarized as follows:

– We design and implement an efficient FPGA design environment Adrastea,
with the capabilities of designing both the kernel implementation of FPGA
and the interface, as well as the capabilities to perform FPGA optimizations;

– We demonstrate the efficiency and effectiveness of Adrastea for FPGA design
on Random Forest and Fast Fourier Transform applications.

The remaining parts of this paper are organized as follows: In Section 2, we
provide a background on FPGA design, the Xilinx Vitis Toolchain, and a brief
review of related work on FPGA build frameworks. In Section 3, we discuss the
design and use of Adrastea. In Section 4, we provide examples of building two
applications using the Adrastea framework and discuss results from the design
space explorations, followed by a conclusion and future work in Section 5.

2 Background

In this section, we provide more details on the principles of FPGA development
and a general description of the Xilinx Toolchain.

2.1 FPGA Design

FPGAs require a different programming style from CPUs and GPUs, and
code written for a CPU or GPU will likely need to be rewritten to meet the
desired performance goals. When writing code for the FPGA, three paradigms
are helpful to keep in mind for designing FPGA kernels [23]. These paradigms are
producer-consumer, streaming data, and pipelining. Together these paradigms
are a useful way to think about designing for FPGAs. Computation can be broken
into tasks that operate on a data stream. These tasks then read the data from a
stream, perform computation on the data, then send the output data to the next
task. The tasks and communication can then be pipelined both within a task, at
the instructions level, or between tasks, at the task level. The performance of
the pipeline is expressed by the initiation interval (II) and the iteration latency.
From this, the total latency can be computed as shown in Equation 1.

Total Latency = Iteration Latency + II · (Number of Items − 1) (1)

The total application latency is the total latency of the critical dataflow path,
and the application throughput is determined by the width of the data streams
and the largest II. There is a trade-off that occurs between the latency, II, area,
and clock frequency of the design, and Adrastea can be used to aid in the design
space search to optimize the kernel to find the best kernel design for a given
application and target FPGA.
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2.2 Xilinx Vitis Toolchain

The Xilinx Vitis unified software platform [11] is a comprehensive develop-
ment environment to build and deploy performance-critical kernels accelerated on
Xilinx platforms, including Alveo cards, cloud FPGA instances, and embedded
FPGA platforms. Vitis supports FPGA accelerated application programming
using C, C++, OpenCL, and RTL by providing a variety of pragmas for pipelin-
ing, dataflow, and optimizations. High-Level Synthesis (HLS) is used to convert
kernels written in high-level programming languages like C, C++, and OpenCL
C into RTL kernels which can then be implemented with the FPGA hardware. In
addition, the Xilinx Runtime Library (XRT) provides APIs to facilitate commu-
nication between the host application and accelerators. XRT eases accelerator life
cycle management and execution management. It also handles memory allocation
and data communication between the host and accelerators.

2.3 Related Work

One of the recent related works is HLS4ML[5], an open-source hardware-
software codesign workflow to translate machine learning kernels into hardware
designs, including FPGAs. The major difference between HLS4ML and this work
is the capability to explore various design choices for general FPGA designs,
while HLS4ML is more focused on optimization for ML kernels.

DARClab developed an automatic synthesis option tuner dedicated to op-
timizing HLS synthesis options [22]. This HLS design space explorer leverages
previous results to explore the HLS parameters effectively. Our work is more
general on the design space knobs allowing the application developer to expose
any knobs they want to explore.

Coyote is a new shell for FPGAs that aims to provide a full suite of operating
system abstractions. In our work, we use the Alveo Shell from Xilinx, but Adrastea
could be extended to use other FPGA tool flows and FPGA shells.

Cock et al. designed a new hybrid CPU and FPGA server system to enable
hybrid systems research, and the system uses a cache-coherent socket to socket
protocol to connect to the FPGA [3]. In this work, we leverage the off-the-shelf
servers and a PCIe-based Alveo FPGA. Cabrera et al. explored CXL and the
implications a CXL interface would have on the programming models for FPGA
kernel design [1]. However, a CXL-enabled FPGA card and server are not available
off the shelf at the time of writing this paper.

3 Adrastea Design Environment

In this section, we present the design of an efficient FPGA development
environment, with the code name Adrastea, that we created to support the
automated process of building and optimizing general FPGA hardware designs
capable of deployment at the edge. Adrastea leverages and combines various
related efforts from ORNL to build a powerful and efficient FPGA development
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environment that solves key challenges with FPGA design, including 1) setting
up a scalable build environment 2) providing convenient interfaces to the FPGA
kernel 3) performing design space exploration

The FPGA build environment leverages the Vitis tool flow discussed in
Subsection 2.2 to synthesize and implement the FPGA designs. Subsection 3.1
covers the virtual machine-based deployment of the development environment,
which enables sharing of computing resources, maintaining multiple versions of
the toolchain, and scaling of build servers for design space experiments. Finally,
CMakefiles provided by IRIS simplify the build process by generating makefiles
that automate the kernel builds.

Adrastea supports easier interfacing to the FPGA kernel through the use of
the IRIS runtime as specified in Subsection 3.2. This interface allows common
handling of the host communication logic and easy-to-use APIs which is common
across multiple accelerator types. With this API, it is easy to have a kernel
generate and run targeting multiple execution targets, including CPU, GPU,
DSP, and FPGA.

By leveraging DEFFE, Adrastea can easily launch large design space search
and optimization runs across multiple build servers. This capability is further
discussed in Subsection 3.3.

With all the components combined, Adrastea implements the design loop
shown in Figure 1. Step 1) leverages DEFFE to build the FPGA kernels using

1) Build Hardware Designs
• Automated Builds

2) Run Hardware Designs
• Automated Runs
• Heterogeneous 

Hardware Accelerators

Hardware Optimization
Loop

Fig. 1: Hardware optimization loop.

automated build flows. These builds can be parameterized with architecture-level
parameters in addition to the synthesis and implementation flags. Different build
configurations can also be run in parallel on the build servers to allow these long-
running processes to execute concurrently. Once the kernel builds are finished,
the designs can then move to step 2) where they are loaded and run using FPGA
hardware or in emulation. As indicated by the curved arrow, the build logs and
execution results collected from the FPGA implementation and can then be used
to provide feedback to the automatic generation steps to improve on the resulting
hardware design. This infrastructure creates a basis for performing automated
hardware optimization loops and continuous integration where both building and
running designs can be completely automated and scheduled.
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3.1 FPGA Building Environment

There are two main challenges with this update loop: 1) the hardware builds
take multiple hours to run; 2) hardware testing must be done on a system with
the hardware available. Both of these issues are addressed by the toolchain
infrastructure deployed on a computer cluster for experimental computing. To
address the first issue, a scalable compute cluster for building is utilized to allow
many hardware builds to be executed in parallel. Although there is not an easy
way to accelerate a single build, multiple builds run in parallel can be used
to evaluate different build configurations concurrently. To address the second
issue, a system with FPGA accelerators is available for hardware execution. The
Slurm job scheduler is used to allocate both build resources and FPGA hardware
resources for submitted jobs. The Vitis Unified Software Development Platform is
a large software installation, ∼110GB, with strict operating system requirements,
and only one version of the Xilinx Runtime library (XRT) can be installed at a
time. To make the setup of multiple machines and the changing of versions easier,
the development platform is installed inside a Kernel-based Virtual Machine
(KVM). PCIe passthrough is used to pass the hypervisor’s FPGA hardware to
the VM. The QCOW2 disk image format is used by the Virtual Machine (VM) so
that common system files, packages, and Vitis can be installed on the backing disk
image file. Then each VM instance based on that backing file uses Copy-on-Write
(COW) to create overlay images that only store changes from the base image.
The backing file then resides in Network File System (NFS) with the overlay
images stored in a local drive of the hypervisor. This allows the unchanging,
large, base files to be stored in a single shared file, with the files that change
more often being stored in the faster local storage.

Slurm and GitLab-CI runners are installed in the VMs using Ansible to enable
easy launching of jobs with a continuous integration (CI) pipeline or via Slurm.
The FPGA is configured as a Generic Resource (GRES) in Slurm to allow Slurm
to allocate the FPGA to jobs. The GitLab-CI pipelines and other automatic build
launching scripts, including DEFFE, make use of Slurm to allocate build resources
and coordinate the use of the FPGAs. Developers using the system also leverage
Slurm to allocate resources for building and testing FPGA designs. The VMs
are divided into multiple partitions in Slurm; the FPGA build partitions have
nodes with the Vitis toolchain but without FPGA hardware, and the FPGA run
partitions have both the toolchain and FPGA hardware. The different versions of
Vitis also have their own partitions. There are two partitions, a build and a run
partition, for each of the available Vitis versions. Since Ansible and VMs with
overlay disk images are used, additional nodes can easily be added or removed and
the Vitis version can be swapped out. Startup and teardown scripts automate the
process of adding or removing new VM instances, making it trivial to change the
version of Vitis that is running on the build servers. Changing the VM where the
FPGA is assigned requires more steps since the process includes shutting down
the VMs, changing the PCIe passthrough configuration, starting the VM with
the FPGA, loading the Vitis shell which corresponds to that version, rebooting
the system to load the new FPGA image, starting all the VMs on the system,
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loading the user shell for the FPGA, and finally using the xbutil to validate the
FPGA setup.

The infrastructure enabling the design flow shown in Figure 1 is implemented
in the compute cluster as shown in Figure 2. Figure 2 shows the same hardware
optimization loop updated with the build and run nodes that are used to build
the hardware in parallel and run the designs on hardware in the respective VMs
as scheduled by Slurm. Since the VMs mount the same network drives and home

FPGA

Bitfiles

Runtime
Results

Vitis Run Node

GitLab-CI Slurm

Virtual Machine

Vitis Run Node

GitLab-CI Slurm

Virtual Machine

Fig. 2: Infrastructure supporting the hardware optimization loop.

directories, the bitfiles, runtime results, and other artifacts can easily be shared
between nodes in the cluster.

3.2 IRIS

Adrastea uses the IRIS task-based programming model for interfacing with
the FPGA kernels [12]. IRIS provides a unified task-based programming interface,
which can be targeted for heterogeneous compute units such as multi-core CPUs,
GPUs (NVidia/AMD), FPGA (Intel and Xilinx), Hexagon DSPs, etc. It also
provides flexibility to the programmer to write task core kernels either using
OpenMP, OpenACC, CUDA, HIP, OpenCL, etc. Memory transfers between the
host and the devices are managed through IRIS’s memory coherence runtime
management. Through IRIS, Adrastea provides the programmer with a simplified
interface which can be called using either a C++ or python application. A simple
python function to call the random forest kernel to run on FPGA is shown in
Figure 3.

3.3 DEFFE

DEFFE (Data Efficient Framework for Exploration) [13] is intended for design
space exploration. It is configurable with parameters (often referred to as knobs)
with possible ranges of values and with cost metrics that are used for evaluation. It
has the flexibility to provide a custom evaluate (Python/Bash) script to evaluate
each set of sample parameter-value combinations. It also provides flexibility
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import iris
def run_random_forest(args, test_data):

features= test_data.data
Y = test_data.target
Y_predict = np.zeros(Y.size, dtype=np.int8)
SIZE = Y.size
iris.init()   # Initialize IRIS Run-time
mem_features = iris.mem(features.nbytes)
mem_Y_predict = iris.mem(Y_predict.nbytes)
task = iris.task()   # Create IRIS task 
task.h2d(mem_features, 0, features.nbytes, features)
task.kernel("rf_classifier", 1, [0], [1], [1],

[mem_features, SIZE, mem_Y_predict], #Parameters
[iris.iris_r, 4, iris.iris_w] )   # Parameters information

task.d2h(mem_Y_predict, 0, Y_predict.nbytes, Y_predict)
cu = iris.iris_cpu
if args.cu == 'fpga':

cu = iris.iris_fpga
task.submit(cu)
iris.finalize()

Fig. 3: Adrastea Python interface through IRIS

to extract the results from the evaluation using a customized extract script
(Python/Bash). These scripts use arguments or environment variables to receive
the parameters from DEFFE. Additionally, DEFFE has a configurable machine
learning model which can be used for workload characterization. DEFFE is
supported by different variants of sampling techniques such as DOEPY (Design
of Experiments) [19] sampling techniques and machine learning-based sampling
techniques. The configurability of DEFFE enables fast design space exploration
with the parallel execution either using multi-core threading or by using a
massively parallel, multiple system Slurm environment. This paper uses the build
environment with Slurm as discussed in Section 3.1 and explores the one-dim
sampling technique for exploring the FPGA design choices.

3.4 Experiment Setup via Git

One of the challenges with building FPGA kernels and conducting design
space search experiments is tracking the history of how the experiment was
performed and allowing the experiment to be easily reproducible. Source code,
including source code for FPGA designs, is commonly stored in source code
repositories like Git in order to track changes in the code. Git can also be used to
keep track of the automatic build scripts and DEFFE experiment configurations.
To ensure history tracking and reproducibility of a hardware build, we first create
an experiment repository to hold the DEFFE configuration along with the scripts
to automate the FPGA build. Iris and DEFFE repositories are then added as
sub-modules to the repository. The generators and source code for the design can
either be included in its own repository and added as a sub-module or directly
included in the experiment repository. When the hardware is built, or DEFFE is
run, the hash of the current commit is included in the logs of the build. That
way, to reproduce the build or to rerun a DEFFE experiment, you only need
to check out the same commit. The commit information is all that is needed to
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reproduce the experiment since the repository includes the same version of the
sub-modules and all the scripts that were used for the build.

Sometimes we also want to store the history of how and when a bitfile was
built. To do this we take the hash of the date, folder name, and commit id. This
hash is then stored in a file that is committed to the repository and included
as a read-only output in the hardware kernel. Then to reproduce the build or
learn how a deployed design was built, you only need to read the hash from the
kernel and search the repository for the hash. Then you know exactly the commit
and, therefore, the state and folder of the repository that was used to build that
hardware kernel.

The method of using Git to store the entire build process and experiment flow
and keeping track of the hash with the output and result enables reproducibility
and provides historical information of the artifacts.

3.5 Complete Adrastea Build Flow

By leveraging the different components that make up Adrastea, a complete
FPGA design flow is built as shown in Figure 4. As input to DEFFE, the design
space knobs, cost metrics, experiment setup, and other configuration is passed
to DEFFE via a config.json file. Additionally, the customized evaluate script
and extract script are passed, which contain the instructions to perform the
build, FPGA execution and results (cost metrics) extraction. DEFFE has more
components, but the main ones used in the Adrastea build flow are shown.
The design space is sampled, and the experiment folders are created. Each
experiment folder contains the parameterized scripts used for the run for that set
of parameters. Next, DEFFE builds the FPGA design in parallel using the build
partition compute units of Slurm via the Xilinx Vitis Toolchain. The build flow
used by the evaluate script for ML workloads is also shown in the figure. The ML
model, along with the build knobs, is passed to an optimized ML code generator
script which generates the HLS code. Then the HLS code is compiled using the
Vitis and Vivado toolchains into an FPGA bitstream. After which, DEFFE uses
the run partition compute units of Slurm to evaluate the FPGA kernel using the
IRIS runtime. Finally, DEFFE writes the results from the design space search
into a spreadsheet. This spreadsheet can then be read into a graphing program
and the results from the experiment can be plotted. We use a Jupyter Notebook
with Seaborn and Pandas to plot the figures shown in this paper.

4 Example Applications Leveraging Adrastea

We have evaluated the effectiveness of Adrastea for an SNS application
with a Random Forest (RF) classification model deployed on Xilinx FPGAs
and also deployed other state-of-the-art random forest classification models. We
also used Adrastea with an FFT kernel to demonstrate how quickly and easily
new applications can be built and explored using the Adrastea development
environment.
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Fig. 4: Adrastea Build Flow

Experimental Setup We deployed the Adrastea development environment on
an experimental cluster using five servers as hypervisors. One Atipa server with
dual-socket Intel Xeon Gold 6130 CPUs, 192GiB of RAM, and a Xilinx Alveo
U250 was used as the hypervisor for the run VM. The run VM was configured
with 24 vCPUs, 92GiB of RAM, and with PCIe passthrough to access the U250.
Four HPE DL385 Servers with dual-socket AMD EPYC 7742 CPUs and 1 TB
of RAM were used as the hypervisor for the build VMs. The build VMs are
configured with 240 vCPUs and 960GB of RAM. The Xilinx Alveo U250 board
is used to evaluate the FPGA designs.

4.1 SNS and other state-of-the-art RF models design space
exploration

The SNS facility at Oak Ridge National Laboratory (ORNL) has the world’s
highest pulsed power proton accelerator delivering 1.4 MW of a proton beam
repeated at 60 Hz onto a stainless steel vessel filled with liquid mercury to
generate neutrons for material research [7]. In order to detect beam loss and
abort the experiment, we designed a custom random forest implementation
using Adrastea [15]. The application requires a highly complex random forest
model which uses 10000 features to make a meaningful prediction and the model
needs to be updated frequently. We leveraged Adrastea not only to optimize the
implementation for RF models to detect the errant beam within 100ns but also
for faster development, design space exploration, and deployment of the random
forest model in the SNS environment FPGA hardware.
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Design parameters and exploration Adrastea has provided a python script
to generate the Xilinx OpenCL code for the random forest model with flattened
nodes while analyzing the dependency of nodes in random forest trees. It has
several knobs to finetune the random forest generation and build process to
explore optimal hyper parameters, such as 1) bitwise optimization flag to enable
bitwise arithmetic operators instead of logical operators, 2) different type random
forest tree code generation such as if-else conditional trees, flattened version of
tree code generation, 3) configurable datatype of features such as floating-point
(FP32), 8-bit fixed-point (FX8), and varying fixed-point bitwidth controlled by
accuracy threshold percentages ranging from 10 to 100 (FT[10-100]), 4) type of
fixed-point approach such as quantization or power of 2 values representation, 5)
voting algorithm logic approach either with direct BRAM based array accesses,
flattened approach either with or without static single assignment optimization.
The design space exploration also explores the optimal frequency setting for the
generated random forest kernel. The design space exploration parameters for the
Adrastea-based random forest model are shown in Table 1. We have configured all
these parameters in the DEFFE configuration file. DEFFE sampled the essential
set of these parameter values combination and evaluated them using massively
parallel Slurm jobs. Each Slurm job is configured to use eight threads, resulting
in the ability to run 100 simultaneous runs across the FPGA build machines.
Completed FPGA implementations were then tested serially on the run partition
of Slurm where the Alveo U250 FPGA is connected. The build time of each
sample evaluation is ∼ 4 hrs, but the execution time on FPGA hardly takes
milliseconds. Hence, it is reasonable to have multiple build systems and one
FPGA run system.

Table 1: Parameters used for experiments
Parameter Type # of Values Values
Frequency (MHz) Build 5 50, 100, 200, 300*, 500

Decision tree Generator 2 Conditional (conditional_trees), 
Flattened*

Bitwise optimization Generator 2 Yes*, No (no_bitwise)

Feature datatype Generator 12
Float (FP32), Fixed 8-bit(FX8),       

FT100*, FT90, FT80, FT70, FT60, 
FT50, FT40, FT30, FT20, FT10

Fixed point type Generator 2 Quantization*, 
Power2 (no_quantization)

Voting Generator 3 Array (array_votes), SSA*, 
No-SSA (no_votes_ssa)
*: Base Parameters (The best)
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Fig. 5: Optimization metrics of interest for different input feature datatypes.

Results We have experimented with the random forest model not only for the
SNS dataset but also for other standard random forest models such as IRIS (4
features), Breast cancer (30 features), and Olivetti (4096 features) datasets which
have 100 trees with maximum depth set to 20. The experiment results for varying
datatype of features and its impact on the latency, resource usage, feature vector
size, and prediction accuracy are shown in Figure 5. Accuracy degradation is
used instead of raw classification accuracy of the testing data since the focus is
the accuracy loss from reducing the bits used to represent the input features.

It can be seen that the representation of features with FX8 will lead straight
away to a 4x reduction in feature vector size when compared to 32-bit floating-
point features. Further exploration of variable fixed-point datatypes with accuracy
threshold will lead to higher gains. For example with 70% (FT70) threshold
the multi-precision fixed-point feature vector size reduction gains are 23x for
SNS, 17x for Olivetti, 4.3x for Breast Cancer, and 6.4x for IRIS, as shown in
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(a)

(b)

(c)

(d)

(e)

Fig. 6: Comparison with different build options.

Figure 5(b). Moreover FT70 has resulted in no accuracy degradation compared
to the floating-point datatype for all benchmarks, as shown in Figure 5(a).

The overall FPGA resource usage of our fixed point design of random forest
models is ∼2%. Figure 5(c) shows the breakdown of resource usages of registers
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(REG), look-up tables (LUT), block RAM (BRAM), and LUTs as memory
(LUTAsMem) as a percentage of the available resources of that type.

The total latency of the models is shown in Figure 5(d) for kernels running at
300MHz frequency. Total latency is calculated as the sum of the latencies (cycles)
for the AXI4 to stream (A2S ) conversion for reading input features, the core
functionality, which contains the random forest classifier (Core), and the stream
to AXI4 (S2A) conversion for the classification output. We have also shown the
effect of other design space parameters in the Figure 6.

4.2 FFT

FFT is a data-intensive and also compute-intensive algorithm used to convert
time domain data to frequency domain for many applications. FFT is an important
component of an Atomic Force Microscope (AFM) and requires a very wide FFT
length and size [21]. We have applied design space exploration on 1-D (single-
dimensional) FFT, optimized and available in the Xilinx Vitis library. We have
ported the Xilinx Vitis 1-D FFT implementation in the Adrastea environment
using IRIS run-time scheduler APIs. We have applied DEFFE design space
exploration on the generated FFT implementation. The FFT implementation
has two design parameters, FFT length (Window) and FFT Size (number of
elements), along with the frequency of kernel to explore, which will have an impact
on resource utilization and runtime latency. We have measured the latency of
FFT algorithm in execution time instead of cycles as it has many iterative loops
and kernel functions. The results of the design space exploration are shown in
Figure 7. FFT length is explored for the range of 1024 to very large window size
of 64K (65536). The 64K FFT build was observed to be successful for 50MHz
frequency. The user can now choose the right design point for the required FFT
application.

4.3 Effectiveness of Adrastea

Though there are highly efficient high-level synthesis tools for FPGA devel-
opment, it is still a challenge for programmers to adapt to FPGA development.
These tools simplified the FPGA core kernel programming as easy as writing
C++/OpenCL code. However, it takes weeks for programmers to write inter-
face code as they have to understand how the FPGA interface works. Using
Adrastea, one can integrate their kernel in the Adrastea environment and call
the kernel from the host program with a few simple function calls. This API can
be called from either a C++ or a python application. Adrastea makes design
space exploration as simple as providing a JSON configuration file and starting
DEFFE. DEFFE then leverages Slurm to build in parallel to get the design space
exploration results in a day, whereas, in the traditional FPGA design environ-
ment, manual exploration takes months to realize and perform the exploration.
In summary, Adrastea enables the FPGA development from programming to
deployment within a day while also conducting a design space exploration, which
not only saves programmers time but also eases the FPGA development.
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Table 2: Adrastea to Speedup Design

Traditional
FPGA design

Adrastea
based SNS

Random Forest

Adrastea
based FFT

Adrastea
Integration Time - 1 hr

(Easy setup) 1 hr

Interface
Programming

Time

Weeks
(Needs expertise)

1 hr (Very easy
similar to

function call)
1 hr

Build script
Writing

2 Days
(Needs expertise)

1 hr
(Very easy as
configuring a

CMake variable)

1 hr

Average
Build Time - ∼ 4 hrs ∼ 9 hrs

Number of
Builds - 90 54

Design Space
Exploration Time

Months
∼ 13 days (SNS)
∼ 21 days (FFT)

(Sequential
build time)

∼ 15 hrs ∼ 26 hrs

Graphing Time 6 hrs 3 hrs (Data is already tabulated) 3 hrs
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Fig. 7: FFT experiment results. Missing data points did not build successfully due to
exceeded resource utilization.

5 Conclusion and Future Work

This paper presents Adrastea, an automated and efficient design environment
to design, implement, and optimize complex FPGA kernels and their interfaces.
By leveraging the power of Adrastea, we can implement and optimize complex
random forest machine learning models (SNS, Olivetti, etc.,) and complex FFT
kernels on a Xilinx Alveo U250 FPGA within a few days. In contrast, it would
take months to design the kernel and perform the same design space exploration
with a traditional FPGA design environment. This speedup is achieved from
the simplified interfacing code, and parallel building of the FPGA designs in a
compute cluster.

For future work, we plan to enhance Adrastea’s capability further and utilize
Adrastea to explore other mission-critical FPGA computing kernels. We also plan
to leverage Adrastea to optimize applications that leverage multiple heterogeneous
accelerator types.
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